
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6115041/publications.pdf Version: 2024-02-01

ALEXANDRA L YOUNG

#	Article	IF	CITATIONS
1	Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage, 2018, 166, 400-424.	2.1	1,026
2	Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage, 2010, 52, 1374-1389.	2.1	629
3	Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data. NeuroImage, 2015, 105, 32-44.	2.1	377
4	Four distinct trajectories of tau deposition identified in Alzheimer's disease. Nature Medicine, 2021, 27, 871-881.	15.2	354
5	Deep gray matter volume loss drives disability worsening in multiple sclerosis. Annals of Neurology, 2018, 83, 210-222.	2.8	295
6	A general framework for experiment design in diffusion MRI and its application in measuring direct tissueâ€microstructure features. Magnetic Resonance in Medicine, 2008, 60, 439-448.	1.9	286
7	Multi-compartment microscopic diffusion imaging. NeuroImage, 2016, 139, 346-359.	2.1	280
8	Progression of regional grey matter atrophy in multiple sclerosis. Brain, 2018, 141, 1665-1677.	3.7	269
9	Imaging brain microstructure with diffusion MRI: practicality and applications. NMR in Biomedicine, 2019, 32, e3841.	1.6	266
10	Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference. Nature Communications, 2018, 9, 4273.	5.8	263
11	A data-driven model of biomarker changes in sporadic Alzheimer's disease. Brain, 2014, 137, 2564-2577.	3.7	243
12	Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. NeuroImage, 2005, 27, 357-367.	2.1	226
13	Multipleâ€Fiber Reconstruction Algorithms for Diffusion MRI. Annals of the New York Academy of Sciences, 2005, 1064, 113-133.	1.8	221
14	An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease. NeuroImage, 2012, 60, 1880-1889.	2.1	192
15	Quantitative mapping of the perâ€axon diffusion coefficients in brain white matter. Magnetic Resonance in Medicine, 2016, 75, 1752-1763.	1.9	190
16	Early development of structural networks and the impact of prematurity on brain connectivity. NeuroImage, 2017, 149, 379-392.	2.1	187
17	Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models. NeuroImage, 2014, 96, 288-299.	2.1	161
18	SANDI: A compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. NeuroImage, 2020, 215, 116835.	2.1	155

#	Article	IF	CITATIONS
19	Conventions and nomenclature for double diffusion encoding NMR and MRI. Magnetic Resonance in Medicine, 2016, 75, 82-87.	1.9	154
20	Bingham–NODDI: Mapping anisotropic orientation dispersion of neurites using diffusion MRI. NeuroImage, 2016, 133, 207-223.	2.1	143
21	Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington's disease. Science Translational Medicine, 2018, 10, .	5.8	134
22	Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy. Epilepsy Research, 2014, 108, 336-339.	0.8	129
23	Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nature Communications, 2021, 12, 2078.	5.8	112
24	Data-driven models of dominantly-inherited Alzheimer's disease progression. Brain, 2018, 141, 1529-1544.	3.7	111
25	<scp>PGSE</scp> , <scp>OGSE</scp> , and sensitivity to axon diameter in diffusion <scp>MRI</scp> : Insight from a simulation study. Magnetic Resonance in Medicine, 2016, 75, 688-700.	1.9	109
26	Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo. NeuroImage, 2015, 111, 590-601.	2.1	106
27	Maximum Entropy Spherical Deconvolution for Diffusion MRI. Lecture Notes in Computer Science, 2005, 19, 76-87.	1.0	100
28	Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms. NeuroImage, 2019, 195, 285-299.	2.1	92
29	Image quality transfer and applications in diffusion MRI. NeuroImage, 2017, 152, 283-298.	2.1	91
30	Cortical microstructure in young onset Alzheimer's disease using neurite orientation dispersion and density imaging. Human Brain Mapping, 2018, 39, 3005-3017.	1.9	87
31	ApoE influences regional white-matter axonal density loss in Alzheimer's disease. Neurobiology of Aging, 2017, 57, 8-17.	1.5	82
32	Probabilistic disease progression modeling to characterize diagnostic uncertainty: Application to staging and prediction in Alzheimer's disease. NeuroImage, 2019, 190, 56-68.	2.1	80
33	Predicting Alzheimer's disease progression using deep recurrent neural networks. NeuroImage, 2020, 222, 117203.	2.1	76
34	Imaging plus X: multimodal models of neurodegenerative disease. Current Opinion in Neurology, 2017, 30, 371-379.	1.8	75
35	Combined diffusionâ€relaxometry MRI to identify dysfunction in the human placenta. Magnetic Resonance in Medicine, 2019, 82, 95-106.	1.9	74
36	Different patterns of cortical maturation before and after 38 weeks gestational age demonstrated by diffusion MRI in vivo. NeuroImage, 2019, 185, 764-775.	2.1	73

#	Article	IF	CITATIONS
37	Towards higher sensitivity and stability of axon diameter estimation with diffusionâ€weighted MRI. NMR in Biomedicine, 2016, 29, 293-308.	1.6	70
38	Machine learning based compartment models with permeability for white matter microstructure imaging. NeuroImage, 2017, 150, 119-135.	2.1	70
39	Neurite orientation and dispersion density imaging (NODDI) detects cortical and corticospinal tract degeneration in ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 404-411.	0.9	70
40	Aging related cognitive changes associated with Alzheimer's disease in Down syndrome. Annals of Clinical and Translational Neurology, 2018, 5, 741-751.	1.7	64
41	Longitudinal neuroanatomical and cognitive progression of posterior cortical atrophy. Brain, 2019, 142, 2082-2095.	3.7	64
42	Mutant huntingtin and neurofilament light have distinct longitudinal dynamics in Huntington's disease. Science Translational Medicine, 2020, 12, .	5.8	64
43	Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest. Neurology, 2016, 87, 2463-2470.	1.5	63
44	Impaired development of the cerebral cortex in infants with congenital heart disease is correlated to reduced cerebral oxygen delivery. Scientific Reports, 2017, 7, 15088.	1.6	60
45	Multiâ€modal functional MRI to explore placental function over gestation. Magnetic Resonance in Medicine, 2019, 81, 1191-1204.	1.9	60
46	Uncertainty modelling in deep learning for safer neuroimage enhancement: Demonstration in diffusion MRI. NeuroImage, 2021, 225, 117366.	2.1	59
47	Disease Progression Modeling in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 294-302.	2.5	56
48	White matter compartment models for in vivo diffusion MRI at 300 mT/m. NeuroImage, 2015, 118, 468-483.	2.1	53
49	Placenta microstructure and microcirculation imaging with diffusion MRI. Magnetic Resonance in Medicine, 2018, 80, 756-766.	1.9	53
50	Joint super-resolution and synthesis of 1Âmm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast. NeuroImage, 2021, 237, 118206.	2.1	52
51	Eyetracking Metrics in Young Onset Alzheimer's Disease: A Window into Cognitive Visual Functions. Frontiers in Neurology, 2017, 8, 377.	1.1	50
52	An imageâ€based model of brain volume biomarker changes in Huntington's disease. Annals of Clinical and Translational Neurology, 2018, 5, 570-582.	1.7	50
53	Neurite density is reduced in the presymptomatic phase of <i>C9orf72</i> disease. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 387-394.	0.9	50
54	Sequence of clinical and neurodegeneration events in Parkinson's disease progression. Brain, 2021, 144, 975-988.	3.7	49

#	Article	IF	CITATIONS
55	Reduced neurite density in the brain and cervical spinal cord in relapsing–remitting multiple sclerosis: A NODDI study. Multiple Sclerosis Journal, 2020, 26, 1647-1657.	1.4	48
56	Accurate estimation of microscopic diffusion anisotropy and its time dependence in the mouse brain. NeuroImage, 2018, 183, 934-949.	2.1	46
57	DIVE: A spatiotemporal progression model of brain pathology in neurodegenerative disorders. Neurolmage, 2019, 192, 166-177.	2.1	45
58	Data-Driven Sequence of Changes to Anatomical Brain Connectivity in Sporadic Alzheimer's Disease. Frontiers in Neurology, 2017, 8, 580.	1.1	42
59	Multi-study validation of data-driven disease progression models to characterize evolution of biomarkers in Alzheimer's disease. NeuroImage: Clinical, 2019, 24, 101954.	1.4	42
60	SVM recursive feature elimination analyses of structural brain MRI predicts near-term relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis. NeuroImage: Clinical, 2019, 24, 102011.	1.4	42
61	Susceptibility of brain atrophy to <i>TRIB3</i> in Alzheimer's disease, evidence from functional prioritization in imaging genetics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3162-3167.	3.3	41
62	Modelâ€based estimation of microscopic anisotropy using diffusion MRI: a simulation study. NMR in Biomedicine, 2016, 29, 672-685.	1.6	40
63	Improved tractography using asymmetric fibre orientation distributions. NeuroImage, 2017, 158, 205-218.	2.1	39
64	A generative model of realistic brain cells with application to numerical simulation of the diffusion-weighted MR signal. NeuroImage, 2019, 188, 391-402.	2.1	36
65	A tract-specific approach to assessing white matter in preterm infants. NeuroImage, 2017, 157, 675-694.	2.1	35
66	Training data distribution significantly impacts the estimation of tissue microstructure with machine learning. Magnetic Resonance in Medicine, 2022, 87, 932-947.	1.9	35
67	Multi-parametric quantitative in vivo spinal cord MRI with unified signal readout and image denoising. Neurolmage, 2020, 217, 116884.	2.1	34
68	Tertiary lymphoid structures (TLS) identification and density assessment on H&E-stained digital slides of lung cancer. PLoS ONE, 2021, 16, e0256907.	1.1	34
69	Diffusion MRI microstructure models with in vivo human brain Connectome data: results from a multiâ€group comparison. NMR in Biomedicine, 2017, 30, e3734.	1.6	33
70	TADPOLE Challenge: Accurate Alzheimer's Disease Prediction Through Crowdsourced Forecasting of Future Data. Lecture Notes in Computer Science, 2019, 11843, 1-10.	1.0	32
71	Exploiting peak anisotropy for tracking through complex structures. , 2007, , .		31
72	Using diffusion MRI to discriminate areas of cortical grey matter. NeuroImage, 2018, 182, 456-468.	2.1	31

#	Article	IF	CITATIONS
73	Sequences of cognitive decline in typical Alzheimer's disease and posterior cortical atrophy estimated using a novel eventâ€based model of disease progression. Alzheimer's and Dementia, 2020, 16, 965-973.	0.4	30
74	Relevance of timeâ€dependence for clinically viable diffusion imaging of the spinal cord. Magnetic Resonance in Medicine, 2019, 81, 1247-1264.	1.9	29
75	Noninvasive diffusion magnetic resonance imaging of brain tumour cell size for the early detection of therapeutic response. Scientific Reports, 2020, 10, 9223.	1.6	29
76	Characterizing the Clinical Features and Atrophy Patterns of <i>MAPT</i> -Related Frontotemporal Dementia With Disease Progression Modeling. Neurology, 2021, 97, e941-e952.	1.5	29
77	Applying causal models to explore the mechanism of action of simvastatin in progressive multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11020-11027.	3.3	28
78	Prion propagation estimated from brain diffusion MRI is subtype dependent in sporadic Creutzfeldt–Jakob disease. Acta Neuropathologica, 2020, 140, 169-181.	3.9	28
79	A framework for optimal whole-sample histological quantification of neurite orientation dispersion in the human spinal cord. Journal of Neuroscience Methods, 2016, 273, 20-32.	1.3	27
80	Microstructural models for diffusion MRI in breast cancer and surrounding stroma: an <i>ex vivo</i> study. NMR in Biomedicine, 2017, 30, e3679.	1.6	27
81	Apparatus for Histological Validation of In Vivo and Ex Vivo Magnetic Resonance Imaging of the Human Prostate. Frontiers in Oncology, 2017, 7, 47.	1.3	27
82	Fixel-based analysis of the preterm brain: Disentangling bundle-specific white matter microstructural and macrostructural changes in relation to clinical risk factors. NeuroImage: Clinical, 2019, 23, 101820.	1.4	27
83	Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum. Frontiers in Neuroanatomy, 2016, 10, 59.	0.9	26
84	Double oscillating diffusion encoding and sensitivity to microscopic anisotropy. Magnetic Resonance in Medicine, 2017, 78, 550-564.	1.9	26
85	Modeling Alzheimer's disease progression using deep recurrent neural networks. , 2018, , .		26
86	VERDICT MRI validation in fresh and fixed prostate specimens using patientâ€specific moulds for histological and MR alignment. NMR in Biomedicine, 2019, 32, e4073.	1.6	22
87	Robust Markers and Sample Sizes for Multicenter Trials of Huntington Disease. Annals of Neurology, 2020, 87, 751-762.	2.8	22
88	Data-Driven multi-Contrast spectral microstructure imaging with InSpect: INtegrated SPECTral component estimation and mapping. Medical Image Analysis, 2021, 71, 102045.	7.0	22
89	Multiple Orderings of Events in Disease Progression. Lecture Notes in Computer Science, 2015, 24, 711-722.	1.0	22
90	AlzEye: longitudinal record-level linkage of ophthalmic imaging and hospital admissions of 353 157 patients in London, UK. BMJ Open, 2022, 12, e058552.	0.8	22

#	Article	IF	CITATIONS
91	ConFiG: Contextual Fibre Growth to generate realistic axonal packing for diffusion MRI simulation. NeuroImage, 2020, 220, 117107.	2.1	21
92	The sequence of structural, functional and cognitive changes in multiple sclerosis. NeuroImage: Clinical, 2021, 29, 102550.	1.4	21
93	BrainPainter: A Software for the Visualisation of Brain Structures, Biomarkers and Associated Pathological Processes. Lecture Notes in Computer Science, 2019, 11846, 112-120.	1.0	21
94	AutoMorph: Automated Retinal Vascular Morphology Quantification Via a Deep Learning Pipeline. Translational Vision Science and Technology, 2022, 11, 12.	1.1	21
95	Revealing the Timeline of Structural MRI Changes in Premanifest to Manifest Huntington Disease. Neurology: Genetics, 2021, 7, e617.	0.9	20
96	pySuStaIn: A Python implementation of the Subtype and Stage Inference algorithm. SoftwareX, 2021, 16, 100811.	1.2	19
97	Probing axons using multiâ€compartmental diffusion in multiple sclerosis. Annals of Clinical and Translational Neurology, 2019, 6, 1595-1605.	1.7	17
98	Ordinal SuStaIn: Subtype and Stage Inference for Clinical Scores, Visual Ratings, and Other Ordinal Data. Frontiers in Artificial Intelligence, 2021, 4, 613261.	2.0	17
99	Experimental studies of g-ratio MRI in ex vivo mouse brain. NeuroImage, 2018, 167, 366-371.	2.1	16
100	Simplified Luminal Water Imaging for the Detection of Prostate Cancer From Multiecho T ₂ MR Images. Journal of Magnetic Resonance Imaging, 2019, 50, 910-917.	1.9	16
101	Evolution of white matter damage in amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology, 2020, 7, 722-732.	1.7	16
102	Learning Imaging Biomarker Trajectories from Noisy Alzheimer's Disease Data Using a Bayesian Multilevel Model. Lecture Notes in Computer Science, 2014, , 85-94.	1.0	15
103	An optimized framework for quantitative magnetization transfer imaging of the cervical spinal cord in vivo. Magnetic Resonance in Medicine, 2018, 79, 2576-2588.	1.9	15
104	Modeling longitudinal imaging biomarkers with parametric Bayesian multiâ€ŧask learning. Human Brain Mapping, 2019, 40, 3982-4000.	1.9	15
105	Inter-Cohort Validation of SuStaln Model for Alzheimer's Disease. Frontiers in Big Data, 2021, 4, 661110.	1.8	15
106	Identifying and evaluating clinical subtypes of Alzheimer's disease in care electronic health records using unsupervised machine learning. BMC Medical Informatics and Decision Making, 2021, 21, 343.	1.5	15
107	A simulation system for biomarker evolution in neurodegenerative disease. Medical Image Analysis, 2015, 26, 47-56.	7.0	13
108	Quantitative detection and staging of presymptomatic cognitive decline in familial Alzheimer's disease: a retrospective cohort analysis. Alzheimer's Research and Therapy, 2020, 12, 126.	3.0	13

9

#	Article	IF	CITATIONS
109	An Event-Based Disease Progression Model and Its Application to Familial Alzheimer's Disease. Lecture Notes in Computer Science, 2011, 22, 748-759.	1.0	13
110	The Importance of Being Dispersed: A Ranking of Diffusion MRI Models for Fibre Dispersion Using In Vivo Human Brain Data. Lecture Notes in Computer Science, 2013, 16, 74-81.	1.0	13
111	Degenerative adversarial neuroimage nets for brain scan simulations: Application in ageing and dementia. Medical Image Analysis, 2022, 75, 102257.	7.0	13
112	Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases. NeuroImage: Clinical, 2015, 7, 142-154.	1.4	12
113	Machine learning based white matter models with permeability: An experimental study in cuprizone treated in-vivo mouse model of axonal demyelination. NeuroImage, 2021, 224, 117425.	2.1	12
114	Comparison of Neurite Orientation Dispersion and Density Imaging and Two-Compartment Spherical Mean Technique Parameter Maps in Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 662855.	1.1	12
115	Microstructural parameter estimation in vivo using diffusion MRI and structured prior information. Magnetic Resonance in Medicine, 2016, 75, 1787-1796.	1.9	11
116	In Utero Diffusion MRI. Topics in Magnetic Resonance Imaging, 2019, 28, 255-264.	0.7	11
117	Differences in topological progression profile among neurodegenerative diseases from imaging data. ELife, 2019, 8, .	2.8	11
118	Statistical Modeling of Colour Data. International Journal of Computer Vision, 2001, 44, 87-109.	10.9	10
119	Model-based registration to correct for motion between acquisitions in diffusion MR imaging. , 2008, , .		10
120	Validation of low-dose lung cancer PET-CT protocol and PET image improvement using machine learning. Physica Medica, 2021, 81, 285-294.	0.4	10
121	Improving the characterization of meningioma microstructure in proton therapy from conventional apparent diffusion coefficient measurements using Monte Carlo simulations of diffusion MRI. Medical Physics, 2021, 48, 1250-1261.	1.6	10
122	Evaluation of PSA and PSA Density in a Multiparametric Magnetic Resonance Imaging-Directed Diagnostic Pathway for Suspected Prostate Cancer: The INNOVATE Trial. Cancers, 2021, 13, 1985.	1.7	10
123	On the potential for mapping apparent neural soma density via a clinically viable diffusion MRI protocol. NeuroImage, 2021, 239, 118303.	2.1	10
124	On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge. NeuroImage, 2021, 240, 118367.	2.1	10
125	Ten years of image analysis and machine learning competitions in dementia. NeuroImage, 2022, 253, 119083.	2.1	10

126 Regularized super-resolution for diffusion MRI. , 2008, , .

#	Article	IF	CITATIONS
127	Microstructure Characterization of Bone Metastases from Prostate Cancer with Diffusion MRI: Preliminary Findings. Frontiers in Oncology, 2018, 8, 26.	1.3	9
128	Predicting Alzheimer's disease progression: Results from the TADPOLE Challenge. Alzheimer's and Dementia, 2020, 16, e039538.	0.4	9
129	Measuring diffusion exchange across the cell membrane with DEXSY (Diffusion Exchange) Tj ETQq1 1 0.784314	rgBT/Ove	erloçk 10 Tf 5
130	Detection of covert lesions in focal epilepsy using computational analysis of multimodal magnetic resonance imaging data. Epilepsia, 2021, 62, 807-816.	2.6	9
131	Higherâ€order diffusion MRI characterization of mesorectal lymph nodes in rectal cancer. Magnetic Resonance in Medicine, 2020, 84, 348-364.	1.9	8
132	Using Unsupervised Learning to Identify Clinical Subtypes of Alzheimer's Disease in Electronic Health Records. Studies in Health Technology and Informatics, 2020, 270, 499-503.	0.2	8
133	Learning Transition Times in Event Sequences: The Temporal Event-Based Model of Disease Progression. Lecture Notes in Computer Science, 2021, , 583-595.	1.0	7
134	Temporal Progression Patterns of Brain Atrophy in Corticobasal Syndrome and Progressive Supranuclear Palsy Revealed by Subtype and Stage Inference (SuStaIn). Frontiers in Neurology, 2022, 13, 814768.	1.1	7
135	CRAFT (Cerclage after full dilatation caesarean section): protocol of a mixed methods study investigating the role of previous in-labour caesarean section in preterm birth risk. BMC Pregnancy and Childbirth, 2020, 20, 698.	0.9	6
136	Microscopic susceptibility anisotropy imaging. Magnetic Resonance in Medicine, 2020, 84, 2739-2753.	1.9	6
137	Mortality in combined pulmonary fibrosis and emphysema patients is determined by the sum of pulmonary fibrosis and emphysema. ERJ Open Research, 2021, 7, 00316-2021.	1.1	6
138	Pleuroparenchymal fibroelastosis in idiopathic pulmonary fibrosis: Survival analysis using visual and computer-based computed tomography assessment. EClinicalMedicine, 2021, 38, 101009.	3.2	6
139	A Vertex Clustering Model for Disease Progression: Application to Cortical Thickness Images. Lecture Notes in Computer Science, 2017, , 134-145.	1.0	6
140	Targeted Screening for Alzheimer's Disease Clinical Trials Using Data-Driven Disease Progression Models. Frontiers in Artificial Intelligence, 2022, 5, .	2.0	6
141	Thoracic Imaging at Exacerbation of Chronic Obstructive Pulmonary Disease: A Systematic Review. International Journal of COPD, 2020, Volume 15, 1751-1787.	0.9	5
142	Spatiotemporal imaging phenotypes of tau pathology in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e045612.	0.4	5
143	Analyzing large Alzheimer's disease cognitive datasets: Considerations and challenges. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12135.	1.2	5
144	Opportunities and Barriers for Adoption of a Decision-Support Tool for Alzheimer's Disease. ACM Transactions on Computing for Healthcare, 2021, 2, 1-19.	3.3	4

#	Article	IF	CITATIONS
145	Disease Knowledge Transfer Across Neurodegenerative Diseases. Lecture Notes in Computer Science, 2019, 11765, 860-868.	1.0	4
146	Deep Learning-Based Long Term Mortality Prediction in the National Lung Screening Trial. IEEE Access, 2022, 10, 34369-34378.	2.6	4
147	Trajectories of Disease Accumulation Using Electronic Health Records. Studies in Health Technology and Informatics, 2020, 270, 469-473.	0.2	3
148	Optimization of the DCE-CT protocol using active imaging. , 2010, , .		2
149	Prediction of Second Neurological Attack in Patients with Clinically Isolated Syndrome Using Support Vector Machines. , 2013, , .		2
150	[ICâ€Pâ€154]: CHARACTERISING THE PROGRESSION OF ALZHEIMER's DISEASE SUBTYPES USING SUBTYPE AND STAGE INFERENCE (SUSTAIN). Alzheimer's and Dementia, 2017, 13, P116.	0.4	2
151	P1â€372: SUBTYPES OF NEURODEGENERATION IN ALZHEIMER DISEASE: A HEADâ€TOâ€HEAD COMPARISON OF BRAIN ATROPHY SUBTYPE ALGORITHMS IN ADNI. Alzheimer's and Dementia, 2018, 14, P438.	FOUR 0.4	2
152	Multiple b-values improve discrimination of cortical gray matter regions using diffusion MRI: an experimental validation with a data-driven approach. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2021, 34, 677-687.	1.1	2
153	A Multi-Study Model-Based Evaluation of the Sequence of Imaging and Clinical Biomarker Changes in Huntington's Disease. Frontiers in Big Data, 2021, 4, 662200.	1.8	2
154	Presumed small vessel disease, imaging and cognition markers in the Alzheimer's Disease Neuroimaging Initiative. Brain Communications, 2021, 3, fcab226.	1.5	2
155	Ranking diffusion-MRI models with in-vivo human brain data. , 2013, , .		1
156	[P1–443]: MULTIPLE DISTINCT ATROPHY PATTERNS FOUND IN GENETIC FRONTOTEMPORAL DEMENTIA USING SUBTYPE AND STAGE INFERENCE (SUSTAIN). Alzheimer's and Dementia, 2017, 13, P453.	0.4	1
157	O3â€10â€04: GENOMEWIDE ASSOCIATION STUDY OF DATAâ€DRIVEN ALZHEIMER'S DISEASE SUBTYPES. Alzheir and Dementia, 2018, 14, P1042.	ner's 0.4	1
158	O3â€03â€01: THE SEQUENCE AND TIMING OF PRECLINICAL COGNITIVE DECLINE IN AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2019, 15, P882.	0.4	1
159	Tauâ€first subtype of Alzheimer's disease progression consistently identified through PET and CSF. Alzheimer's and Dementia, 2020, 16, e045412.	0.4	1
160	Multimodal modelling of the heterogeneity of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e045822.	0.4	1
161	Disease progression patterns in COPD. , 2018, , .		1
162	Subtype and stage inference identifies distinct atrophy patterns in genetic frontotemporal dementia that MAP onto specific MAPT mutations. Alzheimer's and Dementia, 2020, 16, e042996.	0.4	1

#	Article	IF	CITATIONS
163	What do dataâ€driven Alzheimer's disease subtypes tell us about white matter pathology and clinical progression?. Alzheimer's and Dementia, 2021, 17, .	0.4	1
164	Guest Editorial Special Issue on Computational Diffusion MRI. IEEE Transactions on Medical Imaging, 2007, 26, 1425-1427.	5.4	0
165	Exploiting hierarchy in structural brain networks. , 2011, , .		0
166	[P4–261]: LONGITUDINAL EVALUATION OF NEUROPSYCHOLOGICAL AND NEUROIMAGING PROGRESSION IN POSTERIOR CORTICAL ATROPHY. Alzheimer's and Dementia, 2017, 13, P1382.	0.4	0
167	[ICâ€Pâ€079]: MULTIPLE DISTINCT ATROPHY PATTERNS FOUND IN GENETIC FRONTOTEMPORAL DEMENTIA USIN SUBTYPE AND STAGE INFERENCE (SUSTAIN). Alzheimer's and Dementia, 2017, 13, P65.	С 0.4	0
168	[P2–414]: CHARACTERISING THE PROGRESSION OF ALZHEIMER's DISEASE SUBTYPES USING SUBTYPE AND STAGE INFERENCE (SUSTAIN). Alzheimer's and Dementia, 2017, 13, P791.	0.4	0
169	[P4–164]: DATAâ€DRIVEN MODELS OF DISEASE PROGRESSION AND APPLICATIONS TO ALZHEIMER'S DISEASE: EVENTâ€BASED MODEL AND DIFFERENTIAL EQUATION MODELS OF BIOMARKER CHANGES IN ADNI. Alzheimer's and Dementia, 2017, 13, P1323.	0.4	0
170	[P4–230]: LONGITUDINAL NEURITE ORIENTATION DISPERSION AND DENSITY IMAGING IN YOUNGâ€ONSET ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P1359.	0.4	0
171	[P4–257]: ANALYSIS OF THE HETEROGENEITY OF POSTERIOR CORTICAL ATROPHY: DATAâ€DRIVEN MODEL PREDICTS DISTINCT ATROPHY PATTERNS FOR THREE DIFFERENT COGNITIVE SUBGROUPS. Alzheimer's and Dementia, 2017, 13, P1379.	0.4	0
172	[P4–289]: CAN EYETRACKING METRICS RELATE TO PERFORMANCE ON VISUAL COGNITIVE TESTS OF INDIVIDUALS WITH YOUNGâ€ONSET ALZHEIMER's DISEASE?. Alzheimer's and Dementia, 2017, 13, P1397.	0.4	0
173	[ICâ€Pâ€141]: ANALYSIS OF THE HETEROGENEITY OF POSTERIOR CORTICAL ATROPHY: DATAâ€DRIVEN MODEL PREDICTS DISTINCT ATROPHY PATTERNS FOR THREE DIFFERENT COGNITIVE SUBGROUPS. Alzheimer's and Dementia, 2017, 13, P106.	0.4	0
174	[ICâ€Pâ€168]: LONGITUDINAL NEURITE ORIENTATION DISPERSION AND DENSITY IMAGING IN YOUNGâ€ONSET ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P127.	0.4	0
175	TDâ€₽â€024: EFFECTS OF VISUAL ENVIRONMENT ON FIXATION AND GAIT PARAMETERS IN ALZHEIMER'S DISEASE AND POSTERIOR CORTICAL ATROPHY. Alzheimer's and Dementia, 2018, 14, P196.	0.4	0
176	P4â€448: ECHOES AROUND THE HOME: CAN THE AMAZON ECHO BE USED IN THE HOME TO HELP THOSE LIVINO WITH DEMENTIA?. Alzheimer's and Dementia, 2018, 14, P1495.	0.4	0
177	P3â€436: MECHANISTIC PROFILES OF NEURODEGENERATION: A STUDY IN ALZHEIMER'S DISEASE, HEALTHY AGEING AND PRIMARY PROGRESSIVE MULTIPLE SCLEROSIS. Alzheimer's and Dementia, 2018, 14, P1280.	0.4	0
178	ICâ€Pâ€076: GENOMEWIDE ASSOCIATION STUDY OF DATAâ€DRIVEN ALZHEIMER'S DISEASE SUBTYPES. Alzheime and Dementia, 2018, 14, P67.	er's 0.4	0
179	P1â€662: EFFECTS OF VISUAL ENVIRONMENT ON FIXATION AND GAIT PARAMETERS IN ALZHEIMER'S DISEASE AN POSTERIOR CORTICAL ATROPHY. Alzheimer's and Dementia, 2018, 14, P596.	D 0.4	0
180	P1â€474: SURFACEâ€BASED ANALYSIS OF CORTICAL GREY MATTER MICROSTRUCTURE IN YOUNGâ€ONSET ALZHEIMER'S DISEASE USING NEURITE ORIENTATION DISPERSION AND DENSITY IMAGING (NODDI). Alzheimer's and Dementia, 2018, 14, P505.	0.4	0

#	Article	IF	CITATIONS
181	D09â€Parallel evaluation of mutant huntingtin and neurofilament light as biomarkers for huntington's disease: the hd-csf study. , 2018, , .		0
182	O1â€08â€02: SEQUENCE OF COGNITIVE DECLINE IN ADULTS WITH DOWN SYNDROME DURING PROGRESSION FROM PRECLINICAL TO PRODROMAL ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P235.	0.4	0
183	TDâ€07â€02: ECHOES AROUND THE HOME: CAN THE AMAZON ECHO BE USED IN THE HOME TO HELP THOSE LIVING WITH DEMENTIA?. Alzheimer's and Dementia, 2018, 14, P184.	0.4	0
184	ICâ€Pâ€159: AMYLOIDâ€BETA ACCUMULATION AFFECTS IN VIVO STAGING OF TAU DEPOSITION IN COGNITIVELY IMPAIRED INDIVIDUALS. Alzheimer's and Dementia, 2019, 15, P127.	0.4	0
185	Characterising the spatiotemporal heterogeneity of neurodegenerative diseases using subtype and stage inference. Alzheimer's and Dementia, 2020, 16, e037996.	0.4	0
186	Accounting for systematic spatiotemporal variation improves connectomeâ€based models of tau spreading in human Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e040586.	0.4	0
187	Show, don't tell: Brain visualisations for neuroimaging studies. Alzheimer's and Dementia, 2020, 16, e041997.	0.4	0
188	Interâ€cohort staging efficacy of gaussian process progression model for Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e043246.	0.4	0
189	Cognitive and clinical outcome measures for Alzheimer's disease prevention trials in adults with Down syndrome. Alzheimer's and Dementia, 2020, 16, e043478.	0.4	0
190	Augmenting cognitive assessment with instructionâ€less Eyeâ€ŧracking tests: A machine learning approach for detecting abnormal oculomotor biomarkers. Alzheimer's and Dementia, 2020, 16, e045318.	0.4	0
191	Augmenting cognitive assessment with instructionâ€less eyeâ€tracking tests: A machine learning approach for detecting abnormal oculomotor biomarkers. Alzheimer's and Dementia, 2020, 16, e045483.	0.4	0
192	Reply to: Early white matter changes on diffusion tensor imaging in amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology, 2020, 7, 1266-1267.	1.7	0
193	Special issue on machine learning and deep learning in magnetic resonance. NMR in Biomedicine, 2022, 35, e4713.	1.6	0
194	Web application for single ase AD subtyping and staging based on SuStaIn model. Alzheimer's and Dementia, 2021, 17, .	0.4	0