Chris Cotsapas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6114954/publications.pdf

Version: 2024-02-01

56 papers

13,910 citations

33 h-index 55 g-index

68 all docs 68 docs citations 68 times ranked 25899 citing authors

#	Article	IF	CITATIONS
1	Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biological Psychiatry, 2022, 91, 102-117.	1.3	61
2	Seasonal variation and risk of febrile seizures; a Danish nationwide cohort study. Neuroepidemiology, 2022, , .	2.3	2
3	Epilepsy risk in offspring of affected parents; a cohort study of the "maternal effect―in epilepsy. Annals of Clinical and Translational Neurology, 2021, 8, 153-162.	3.7	6
4	Shared associations identify causal relationships between gene expression and immune cell phenotypes. Communications Biology, 2021, 4, 279.	4.4	3
5	Birth characteristics and risk of febrile seizures. Acta Neurologica Scandinavica, 2021, 144, 51-57.	2.1	12
6	Shared genetic basis between genetic generalized epilepsy and background electroencephalographic oscillations. Epilepsia, 2021, 62, 1518-1527.	5.1	5
7	Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals. American Journal of Human Genetics, 2021, 108, 965-982.	6.2	35
8	Do monogenic inborn errors of immunity cause susceptibility to severe COVID-19?. Journal of Clinical Investigation, 2021, 131, .	8.2	3
9	Ultra-Rare Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of 17,606 Individuals. American Journal of Human Genetics, 2019, 105, 267-282.	6.2	237
10	Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science, 2019, 365, .	12.6	710
11	ImmuneRegulation: a web-based tool for identifying human immune regulatory elements. Nucleic Acids Research, 2019, 47, W142-W150.	14.5	4
12	Childhood seizures and risk of psychiatric disorders in adolescence and early adulthood: a Danish nationwide cohort study. The Lancet Child and Adolescent Health, 2019, 3, 99-108.	5.6	31
13	Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell, 2018, 175, 1679-1687.e7.	28.9	115
14	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
15	Genomeâ€wide association studies of multiple sclerosis. Clinical and Translational Immunology, 2018, 7, e1018.	3.8	58
16	Multiple sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 148, 723-730.	1.8	50
17	Novel determinants of mammalian primary microRNA processing revealed by systematic evaluation of hairpin-containing transcripts and human genetic variation. Genome Research, 2017, 27, 374-384.	5 . 5	78
18	Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-disease-associated loci in three major immune-cell types. Nature Genetics, 2017, 49, 600-605.	21.4	205

#	Article	IF	CITATIONS
19	Large-Scale trans -eQTLs Affect Hundreds of Transcripts and Mediate Patterns of Transcriptional Co-regulation. American Journal of Human Genetics, 2017, 100, 581-591.	6.2	86
20	Integrative Genetic and Epigenetic Analysis Uncovers Regulatory Mechanisms of Autoimmune Disease. American Journal of Human Genetics, 2017, 101, 75-86.	6.2	29
21	Microbiota control immune regulation in humanized mice. JCI Insight, 2017, 2, .	5.0	23
22	Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. ELife, $2016,5,.$	6.0	113
23	Progress and challenges for treating Type 1 diabetes. Journal of Autoimmunity, 2016, 71, 1-9.	6.5	23
24	Changes in Tâ€cell subsets identify responders to FcRâ€nonbinding antiâ€CD3 mAb (teplizumab) in patients with type 1 diabetes. European Journal of Immunology, 2016, 46, 230-241.	2.9	48
25	NR1H3 p.Arg415Gln Is Not Associated to Multiple Sclerosis Risk. Neuron, 2016, 92, 333-335.	8.1	24
26	Survey of variation in human transcription factors reveals prevalent DNA binding changes. Science, 2016, 351, 1450-1454.	12.6	114
27	Network Analysis of Genome-Wide Selective Constraint Reveals a Gene Network Active in Early Fetal Brain Intolerant of Mutation. PLoS Genetics, 2016, 12, e1006121.	3.5	24
28	Shared genetic basis for migraine and ischemic stroke. Neurology, 2015, 84, 2132-2145.	1.1	91
29	Genetic variants associated with autoimmunity drive NFκB signaling and responses to inflammatory stimuli. Science Translational Medicine, 2015, 7, 291ra93.	12.4	81
30	Genetic analysis for a shared biological basis between migraine and coronary artery disease. Neurology: Genetics, 2015, 1, e10.	1.9	61
31	Class II HLA interactions modulate genetic risk for multiple sclerosis. Nature Genetics, 2015, 47, 1107-1113.	21.4	312
32	Weight Loss after Gastric Bypass Is Associated with a Variant at 15q26.1. American Journal of Human Genetics, 2013, 92, 827-834.	6.2	65
33	Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 2013, 45, 1353-1360.	21.4	1,213
34	Immune-mediated disease genetics: the shared basis of pathogenesis. Trends in Immunology, 2013, 34, 22-26.	6.8	88
35	Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls. American Journal of Human Genetics, 2013, 92, 854-865.	6.2	164
36	Pleiotropy in complex traits: challenges and strategies. Nature Reviews Genetics, 2013, 14, 483-495.	16.3	958

#	Article	IF	CITATIONS
37	Systematic Localization of Common Disease-Associated Variation in Regulatory DNA. Science, 2012, 337, 1190-1195.	12.6	3,129
38	Unraveling Multiple MHC Gene Associations with Systemic Lupus Erythematosus: Model Choice Indicates a Role for HLA Alleles and Non-HLA Genes in Europeans. American Journal of Human Genetics, 2012, 91, 778-793.	6.2	140
39	Human genetics offers an emerging picture of common pathways and mechanisms in autoimmunity. Current Opinion in Immunology, 2012, 24, 552-557.	5. 5	29
40	Heritability of the Weight Loss Response to Gastric Bypass Surgery. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1630-E1633.	3 . 6	76
41	Pervasive Sharing of Genetic Effects in Autoimmune Disease. PLoS Genetics, 2011, 7, e1002254.	3.5	540
42	Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology. PLoS Genetics, 2011, 7, e1001273.	3. 5	450
43	Fine Mapping in 94 Inbred Mouse Strains Using a High-Density Haplotype Resource. Genetics, 2010, 185, 1081-1095.	2.9	95
44	Common body mass index-associated variants confer risk of extreme obesity. Human Molecular Genetics, 2009, 18, 3502-3507.	2.9	106
45	Intra- and inter-individual genetic differences in gene expression. Mammalian Genome, 2009, 20, 281-295.	2.2	21
46	Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nature Genetics, 2008, 40, 1059-1061.	21.4	534
47	Genetic Analysis of Human Traits In Vitro: Drug Response and Gene Expression in Lymphoblastoid Cell Lines. PLoS Genetics, 2008, 4, e1000287.	3.5	200
48	Identifying genetic components of drug response in mice. Pharmacogenomics, 2008, 9, 1323-1330.	1.3	2
49	Intra- and inter-individual genetic differences in gene expression. Nature Precedings, 2008, , .	0.1	2
50	Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nature Genetics, 2007, 39, 1477-1482.	21.4	497
51	Genome-wide detection and characterization of positive selection in human populations. Nature, 2007, 449, 913-918.	27.8	1,788
52	Hierarchical Bayes variable selection and microarray experiments. Journal of Multivariate Analysis, 2007, 98, 852-872.	1.0	4
53	Normalization procedures and detection of linkage signal in genetical-genomics experiments. Nature Genetics, 2006, 38, 855-856.	21.4	28
54	Genetic dissection of gene regulation in multiple mouse tissues. Mammalian Genome, 2006, 17, 490-495.	2.2	13

#	Article	lF	CITATIONS
55	Genetic Variation and the Control of Transcription. Cold Spring Harbor Symposia on Quantitative Biology, 2003, 68, 109-114.	1.1	6
56	Pleiotropy in complex traits: challenges and strategies. , 0, .		1