
Robert William Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6113242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural History of Leigh Syndrome: A Study of Disease Burden and Progression. Annals of Neurology, 2022, 91, 117-130.	5.3	17
2	The application of Raman spectroscopy to the diagnosis of mitochondrial muscle disease: A preliminary comparison between fibre optic probe and microscope formats. Journal of Raman Spectroscopy, 2022, 53, 172-181.	2.5	5
3	Pathogenic SLC25A26 variants impair SAH transport activity causing mitochondrial disease. Human Molecular Genetics, 2022, 31, 2049-2062.	2.9	3
4	Identification and characterization of novel <scp><i>MPC1</i></scp> gene variants causing mitochondrial pyruvate carrier deficiency. Journal of Inherited Metabolic Disease, 2022, 45, 264-277.	3.6	7
5	Mosaic dysfunction of mitophagy in mitochondrial muscle disease. Cell Metabolism, 2022, 34, 197-208.e5.	16.2	35
6	Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Medicine, 2022, 14, 38.	8.2	85
7	Biallelic variants in TAMM41 are associated with low muscle cardiolipin levels, leading to neonatal mitochondrial disease. Human Genetics and Genomics Advances, 2022, 3, 100097.	1.7	3
8	Rapid identification of human muscle disease with fibre optic Raman spectroscopy. Analyst, The, 2022, 147, 2533-2540.	3.5	9
9	RRM1 variants cause a mitochondrial DNA maintenance disorder via impaired de novo nucleotide synthesis. Journal of Clinical Investigation, 2022, 132, .	8.2	6
10	Defining mitochondrial protein functions through deep multiomic profiling. Nature, 2022, 606, 382-388.	27.8	49
11	Neuromuscular Junction Abnormalities in Mitochondrial Disease. Neurology: Clinical Practice, 2021, 11, 97-104.	1.6	10
12	LONP1 and mtHSP70 cooperate to promote mitochondrial protein folding. Nature Communications, 2021, 12, 265.	12.8	58
13	POLRMT mutations impair mitochondrial transcription causing neurological disease. Nature Communications, 2021, 12, 1135.	12.8	21
14	The molecular pathology of pathogenic mitochondrial tRNA variants. FEBS Letters, 2021, 595, 1003-1024.	2.8	29
15	The genetics of mitochondrial disease: dissecting mitochondrial pathology using multiâ€omic pipelines. Journal of Pathology, 2021, 254, 430-442.	4.5	33
16	Uniparental isodisomy of chromosome 2 causing MRPL44-related multisystem mitochondrial disease. Molecular Biology Reports, 2021, 48, 2093-2104.	2.3	1
17	Machine learning algorithms reveal the secrets of mitochondrial dynamics. EMBO Molecular Medicine, 2021, 13, e14316.	6.9	6
18	Developmental Consequences of Defective ATG7-Mediated Autophagy in Humans. New England Journal of Medicine, 2021, 384, 2406-2417.	27.0	84

#	Article	IF	CITATIONS
19	A novel MT-CO2 variant causing cerebellar ataxia and neuropathy: The role of muscle biopsy in diagnosis and defining pathogenicity. Neuromuscular Disorders, 2021, 31, 1186-1193.	0.6	5
20	Mitochondrial disease in adults: recent advances and future promise. Lancet Neurology, The, 2021, 20, 573-584.	10.2	96
21	ATG7 safeguards human neural integrity. Autophagy, 2021, 17, 2651-2653.	9.1	7
22	PPA2-associated sudden cardiac death: extending the clinical and allelic spectrum in 20 new families. Genetics in Medicine, 2021, 23, 2415-2425.	2.4	8
23	The Effect of tRNA[Ser]Sec Isopentenylation on Selenoprotein Expression. International Journal of Molecular Sciences, 2021, 22, 11454.	4.1	8
24	Bi-allelic variants in the mitochondrial RNase P subunit PRORP cause mitochondrial tRNA processing defects and pleiotropic multisystem presentations. American Journal of Human Genetics, 2021, 108, 2195-2204.	6.2	26
25	Emerging roles of ATG7 in human health and disease. EMBO Molecular Medicine, 2021, 13, e14824.	6.9	61
26	Characterising a homozygous twoâ€exon deletion in <i>UQCRH</i> : comparing human and mouse phenotypes. EMBO Molecular Medicine, 2021, 13, e14397.	6.9	5
27	100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care — Preliminary Report. New England Journal of Medicine, 2021, 385, 1868-1880.	27.0	352
28	2-Deoxy-D-glucose couples mitochondrial DNA replication with mitochondrial fitness and promotes the selection of wild-type over mutant mitochondrial DNA. Nature Communications, 2021, 12, 6997.	12.8	12
29	Recent advances in understanding the molecular genetic basis of mitochondrial disease. Journal of Inherited Metabolic Disease, 2020, 43, 36-50.	3.6	113
30	Congenital myasthenic syndrome with mild intellectual disability caused by a recurrent SLC25A1 variant. European Journal of Human Genetics, 2020, 28, 373-377.	2.8	20
31	Clinical presentation and proteomic signature of patients with <i>TANGO2</i> mutations. Journal of Inherited Metabolic Disease, 2020, 43, 297-308.	3.6	43
32	The natural history of infantile mitochondrial DNA depletion syndrome due to RRM2B deficiency. Genetics in Medicine, 2020, 22, 199-209.	2.4	14
33	Identification of a novel heterozygous guanosine monophosphate reductase (<i>GMPR</i>) variant in a patient with a lateâ€onset disorder of mitochondrial DNA maintenance. Clinical Genetics, 2020, 97, 276-286.	2.0	7
34	Pathogenic Bi-allelic Mutations in NDUFAF8 Cause Leigh Syndrome with an Isolated Complex I Deficiency. American Journal of Human Genetics, 2020, 106, 92-101.	6.2	39
35	Assessment of mitochondrial respiratory chain enzymes in cells and tissues. Methods in Cell Biology, 2020, 155, 121-156.	1.1	32
36	A novel de novo ACTA1 variant in a patient with nemaline myopathy and mitochondrial Complex I deficiency. Neuromuscular Disorders, 2020, 30, 159-164.	0.6	7

#	Article	IF	CITATIONS
37	A novel, pathogenic dinucleotide deletion in the mitochondrial MT-TY gene causing myasthenia-like features. Neuromuscular Disorders, 2020, 30, 661-668.	0.6	8
38	Earlyâ€onset coenzyme Q10 deficiency associated with ataxia and respiratory chain dysfunction due to novel pathogenic <i>COQ8A</i> variants, including a large intragenic deletion. JIMD Reports, 2020, 54, 45-53.	1.5	8
39	SURF1 related Leigh syndrome: Clinical and molecular findings of 16 patients from Turkey. Molecular Genetics and Metabolism Reports, 2020, 25, 100657.	1.1	10
40	<scp>FBXL</scp> 4 deficiency increases mitochondrial removal by autophagy. EMBO Molecular Medicine, 2020, 12, e11659.	6.9	44
41	Nuclear genetic disorders of mitochondrial DNA gene expression. , 2020, , 375-409.		Ο
42	The genetic basis of isolated mitochondrial complex II deficiency. Molecular Genetics and Metabolism, 2020, 131, 53-65.	1.1	22
43	Ultrasensitive deletion detection links mitochondrial DNA replication, disease, and aging. Genome Biology, 2020, 21, 248.	8.8	48
44	Mitochondrial OXPHOS Biogenesis: Co-Regulation of Protein Synthesis, Import, and Assembly Pathways. International Journal of Molecular Sciences, 2020, 21, 3820.	4.1	74
45	The m.15043GÂ>ÂA MT-CYB variant is not a pathogenic mtDNA variant. Journal of the Neurological Sciences, 2020, 417, 116950.	0.6	1
46	Novel MT-ND Gene Variants Causing Adult-Onset Mitochondrial Disease and Isolated Complex I Deficiency. Frontiers in Genetics, 2020, 11, 24.	2.3	14
47	Metabolic effects of bezafibrate in mitochondrial disease. EMBO Molecular Medicine, 2020, 12, e11589.	6.9	45
48	The feasibility of muscle mitochondrial respiratory chain phenotyping across the cognitive spectrum in Parkinson's disease. Experimental Gerontology, 2020, 138, 110997.	2.8	4
49	Multisystem mitochondrial disease caused by a rare m.10038G>A mitochondrial tRNA ^{Gly} (<i>MT-TG</i>) variant. Neurology: Genetics, 2020, 6, e413.	1.9	2
50	Progressive external ophthalmoplegia due to a recurrent de novo m.15990C>T MT-TP (mt-tRNAPro) gene variant. Neuromuscular Disorders, 2020, 30, 346-350.	0.6	4
51	Recurrent De Novo NAHR Reciprocal Duplications in the ATAD3 Gene Cluster Cause a Neurogenetic Trait with Perturbed Cholesterol and Mitochondrial Metabolism. American Journal of Human Genetics, 2020, 106, 272-279.	6.2	33
52	Mitochondrial DNA mutations induce mitochondrial biogenesis and increase the tumorigenic potential of Hodgkin and Reed–Sternberg cells. Carcinogenesis, 2020, 41, 1735-1745.	2.8	10
53	Albinism and a mitochondrial DNA deletion. Ophthalmic Genetics, 2020, 41, 295-298.	1.2	1
54	Biâ€allelic pathogenic variants in <i>NDUFC2</i> cause earlyâ€onset Leigh syndrome and stalled biogenesis of complex I. EMBO Molecular Medicine, 2020, 12, e12619.	6.9	17

#	Article	IF	CITATIONS
55	Instability of the mitochondrial alanyl-tRNA synthetase underlies fatal infantile-onset cardiomyopathy. Human Molecular Genetics, 2019, 28, 258-268.	2.9	19
56	Dissecting the neuronal vulnerability underpinning Alpers' syndrome: a clinical and neuropathological study. Brain Pathology, 2019, 29, 97-113.	4.1	20
57	A novel mitochondrial m.4414T>C MT-TM gene variant causing progressive external ophthalmoplegia and myopathy. Neuromuscular Disorders, 2019, 29, 693-697.	0.6	2
58	Molecular genetic investigations identify new clinical phenotypes associated with BCS1L-related mitochondrial disease. Human Molecular Genetics, 2019, 28, 3766-3776.	2.9	19
59	Resolving complexity in mitochondrial disease: Towards precision medicine. Molecular Genetics and Metabolism, 2019, 128, 19-29.	1.1	25
60	Quantitative 3D Mapping of the Human Skeletal Muscle Mitochondrial Network. Cell Reports, 2019, 26, 996-1009.e4.	6.4	116
61	A Novel Pathogenic Variant in MT-CO2 Causes an Isolated Mitochondrial Complex IV Deficiency and Late-Onset Cerebellar Ataxia. Journal of Clinical Medicine, 2019, 8, 789.	2.4	11
62	Understanding mitochondrial DNA maintenance disorders at the single muscle fibre level. Nucleic Acids Research, 2019, 47, 7430-7443.	14.5	16
63	Mutations in <i>ELAC2</i> associated with hypertrophic cardiomyopathy impair mitochondrial tRNA $3\hat{a}$ € $^2\hat{a}$ €end processing. Human Mutation, 2019, 40, 1731-1748.	2.5	31
64	Height as a Clinical Biomarker of Disease Burden in Adult Mitochondrial Disease. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2057-2066.	3.6	19
65	A novel pathogenic m.4412G>A MT-TM mitochondrial DNA variant associated with childhood-onset seizures, myopathy and bilateral basal ganglia changes. Mitochondrion, 2019, 47, 18-23.	3.4	4
66	Leigh syndrome caused by mutations in <i><scp>MTFMT</scp></i> is associated with a better prognosis. Annals of Clinical and Translational Neurology, 2019, 6, 515-524.	3.7	17
67	Novel compound mutations in the mitochondrial translation elongation factor (TSFM) gene cause severe cardiomyopathy with myocardial fibro-adipose replacement. Scientific Reports, 2019, 9, 5108.	3.3	12
68	ITPase deficiency causes a Martsolf-like syndrome with a lethal infantile dilated cardiomyopathy. PLoS Genetics, 2019, 15, e1007605.	3.5	25
69	Copy-choice recombination during mitochondrial L-strand synthesis causes DNA deletions. Nature Communications, 2019, 10, 759.	12.8	34
70	NAD(P)HX dehydratase (NAXD) deficiency: a novel neurodegenerative disorder exacerbated by febrile illnesses. Brain, 2019, 142, 50-58.	7.6	51
71	Mitochondrial stress response triggered by defects in protein synthesis quality control. Life Science Alliance, 2019, 2, e201800219.	2.8	26
72	MT-ND5 Mutation Exhibits Highly Variable Neurological Manifestations at Low Mutant Load. EBioMedicine, 2018, 30, 86-93.	6.1	47

#	Article	IF	CITATIONS
73	Defective mitochondrial protease LonP1 can cause classical mitochondrial disease. Human Molecular Genetics, 2018, 27, 1743-1753.	2.9	46
74	Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy–like disease. Genetics in Medicine, 2018, 20, 1224-1235.	2.4	31
75	Biallelic Mutations in ATP5F1D, which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder. American Journal of Human Genetics, 2018, 102, 494-504.	6.2	59
76	A novel histochemistry assay to assess and quantify focal cytochrome <i>c</i> oxidase deficiency. Journal of Pathology, 2018, 245, 311-323.	4.5	17
77	Clinical, biochemical, and genetic features of four patients with shortâ€chain enoylâ€CoA hydratase (ECHS1) deficiency. American Journal of Medical Genetics, Part A, 2018, 176, 1115-1127.	1.2	36
78	Preferential amplification of a human mitochondrial DNA deletion in vitro and in vivo. Scientific Reports, 2018, 8, 1799.	3.3	30
79	SCYL1 variants cause a syndrome with lowγ-glutamyl-transferase cholestasis, acute liver failure, and neurodegeneration (CALFAN). Genetics in Medicine, 2018, 20, 1255-1265.	2.4	50
80	Disclosing the functional changes of two genetic alterations in a patient with Chronic Progressive External Ophthalmoplegia: Report of the novel mtDNA m.7486G>A variant. Neuromuscular Disorders, 2018, 28, 350-360.	0.6	10
81	Pathological mechanisms underlying single largeâ€scale mitochondrial <scp>DNA</scp> deletions. Annals of Neurology, 2018, 83, 115-130.	5.3	42
82	Topoisomerase 3α Is Required for Decatenation and Segregation of Human mtDNA. Molecular Cell, 2018, 69, 9-23.e6.	9.7	102
83	Clinical, biochemical, and genetic features associated with <i>VARS2</i> -related mitochondrial disease. Human Mutation, 2018, 39, 563-578.	2.5	22
84	Loss-of-function mutations in <i>ISCA2</i> disrupt 4Fe-4S cluster machinery and cause a fatal leukodystrophy with hyperglycinemia and mtDNA depletion. Human Mutation, 2018, 39, 537-549.	2.5	21
85	Phenotypic heterogeneity in m.3243A>G mitochondrial disease: The role of nuclear factors. Annals of Clinical and Translational Neurology, 2018, 5, 333-345.	3.7	102
86	Scientific and Ethical Issues in Mitochondrial Donation. New Bioethics, 2018, 24, 57-73.	1.1	25
87	Retrospective natural history of thymidine kinase 2 deficiency. Journal of Medical Genetics, 2018, 55, 515-521.	3.2	73
88	NEW OBSERVATIONS REGARDING THE RETINOPATHY OF GENETICALLY CONFIRMED KEARNS–SAYRE SYNDROME. Retinal Cases and Brief Reports, 2018, 12, 349-358.	0.6	8
89	A novel inborn error of the coenzyme Q10 biosynthesis pathway: cerebellar ataxia and static encephalomyopathy due to COQ5 Câ€methyltransferase deficiency. Human Mutation, 2018, 39, 69-79.	2.5	43
90	Further delineation of the phenotypic spectrum of ISCA2 defect: A report of ten new cases. European Journal of Paediatric Neurology, 2018, 22, 46-55.	1.6	21

#	Article	IF	CITATIONS
91	Neurologic Phenotypes Associated With Mutations in <i>RTN4IP1</i> (<i>OPA10</i>) in Children and Young Adults. JAMA Neurology, 2018, 75, 105.	9.0	26
92	The genotypic and phenotypic spectrum of MTO1 deficiency. Molecular Genetics and Metabolism, 2018, 123, 28-42.	1.1	24
93	Expanding the clinical phenotype of IARS2-related mitochondrial disease. BMC Medical Genetics, 2018, 19, 196.	2.1	16
94	A Wars2 Mutant Mouse Model Displays OXPHOS Deficiencies and Activation of Tissue-Specific Stress Response Pathways. Cell Reports, 2018, 25, 3315-3328.e6.	6.4	35
95	Bi-allelic Mutations in NDUFA6 Establish Its Role in Early-Onset Isolated Mitochondrial Complex I Deficiency. American Journal of Human Genetics, 2018, 103, 592-601.	6.2	41
96	Sideroblastic anemia with myopathy secondary to novel, pathogenic missense variants in the <i>YARS2</i> gene. Haematologica, 2018, 103, e564-e566.	3.5	5
97	Mutations of the mitochondrial carrier translocase channel subunit TIM22 cause early-onset mitochondrial myopathy. Human Molecular Genetics, 2018, 27, 4135-4144.	2.9	30
98	<i> <scp>OXA</scp> 1L </i> mutations cause mitochondrial encephalopathy and a combined oxidative phosphorylation defect. EMBO Molecular Medicine, 2018, 10, .	6.9	54
99	Skeletal muscle mitochondrial oxidative phosphorylation function in idiopathic pulmonary arterial hypertension: in vivo and in vitro study. Pulmonary Circulation, 2018, 8, 1-5.	1.7	10
100	Expanding the phenotype of de novo <i>SLC25A4</i> -linked mitochondrial disease to include mild myopathy. Neurology: Genetics, 2018, 4, e256.	1.9	20
101	Mutations in TOP3A Cause a Bloom Syndrome-like Disorder. American Journal of Human Genetics, 2018, 103, 221-231.	6.2	65
102	Bi-allelic Mutations in Phe-tRNA Synthetase Associated with a Multi-system Pulmonary Disease Support Non-translational Function. American Journal of Human Genetics, 2018, 103, 100-114.	6.2	34
103	Subcellular origin of mitochondrial DNA deletions in human skeletal muscle. Annals of Neurology, 2018, 84, 289-301.	5.3	47
104	mt <scp>DNA</scp> heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease. EMBO Molecular Medicine, 2018, 10, .	6.9	199
105	Confirming TDP2 mutation in spinocerebellar ataxia autosomal recessive 23 (SCAR23). Neurology: Genetics, 2018, 4, e262.	1.9	27
106	Inherited pathogenic mitochondrial DNA mutations and gastrointestinal stem cell populations. Journal of Pathology, 2018, 246, 427-432.	4.5	13
107	Histiocytoid cardiomyopathy and microphthalmia with linear skin defects syndrome: phenotypes linked by truncating variants in <i>NDUFB11</i> . Journal of Physical Education and Sports Management, 2017, 3, a001271.	1.2	19
108	MR-1S Interacts with PET100 and PET117 in Module-Based Assembly of Human Cytochrome c Oxidase. Cell Reports, 2017, 18, 1727-1738.	6.4	86

#	Article	IF	CITATIONS
109	Clinical Features, Molecular Heterogeneity, and Prognostic Implications in <i>YARS2</i> -Related Mitochondrial Myopathy. JAMA Neurology, 2017, 74, 686.	9.0	41
110	Recent Advances in Mitochondrial Disease. Annual Review of Genomics and Human Genetics, 2017, 18, 257-275.	6.2	217
111	Camptocormia and shuffling gait due to a novel <i>MT-TV</i> mutation: Diagnostic pitfalls. Neurology: Genetics, 2017, 3, e147.	1.9	3
112	Genetic diagnosis of Mendelian disorders via RNA sequencing. Nature Communications, 2017, 8, 15824.	12.8	432
113	Clinically proven mtDNA mutations are not common in those with chronic fatigue syndrome. BMC Medical Genetics, 2017, 18, 29.	2.1	15
114	De novo mtDNA point mutations are common and have a low recurrence risk. Journal of Medical Genetics, 2017, 54, 73-83.	3.2	54
115	Mutations in MDH2, Encoding a Krebs Cycle Enzyme, Cause Early-Onset Severe Encephalopathy. American Journal of Human Genetics, 2017, 100, 151-159.	6.2	63
116	De novo <i>CTBP1</i> variant is associated with decreased mitochondrial respiratory chain activities. Neurology: Genetics, 2017, 3, e187.	1.9	11
117	Novel GFM2 variants associated with early-onset neurological presentations of mitochondrial disease and impaired expression of OXPHOS subunits. Neurogenetics, 2017, 18, 227-235.	1.4	10
118	Biallelic C1QBP Mutations Cause Severe Neonatal-, Childhood-, or Later-Onset Cardiomyopathy Associated with Combined Respiratory-Chain Deficiencies. American Journal of Human Genetics, 2017, 101, 525-538.	6.2	58
119	Decreased male reproductive success in association with mitochondrial dysfunction. European Journal of Human Genetics, 2017, 25, 1162-1164.	2.8	18
120	Pigmentary retinopathy, rod–cone dysfunction and sensorineural deafness associated with a rare mitochondrial tRNALys(m.8340G>A) gene variant. British Journal of Ophthalmology, 2017, 101, 1298-1302.	3.9	8
121	Thiamine deficiency in childhood with attention to genetic causes: Survival and outcome predictors. Annals of Neurology, 2017, 82, 317-330.	5.3	65
122	Multipotent Basal Stem Cells, Maintained in Localized Proximal Niches, Support Directed Long-Ranging Epithelial Flows in Human Prostates. Cell Reports, 2017, 20, 1609-1622.	6.4	64
123	Novel <i>POLG</i> variants associated with late-onset de novo status epilepticus and progressive ataxia. Neurology: Genetics, 2017, 3, e181.	1.9	2
124	Progressive deafness–dystonia due to <i>SERAC1</i> mutations: A study of 67 cases. Annals of Neurology, 2017, 82, 1004-1015.	5.3	63
125	Using a quantitative quadruple immunofluorescent assay to diagnose isolated mitochondrial Complex I deficiency. Scientific Reports, 2017, 7, 15676.	3.3	20
126	The genetics and pathology of mitochondrial disease. Journal of Pathology, 2017, 241, 236-250.	4.5	329

#	Article	IF	CITATIONS
127	Pathogenic variants in <i>HTRA2</i> cause an earlyâ€onset mitochondrial syndrome associated with 3â€methylglutaconic aciduria. Journal of Inherited Metabolic Disease, 2017, 40, 121-130.	3.6	23
128	Opening One's Eyes to Mosaicism in Progressive External Ophthalmoplegia. Neurology: Genetics, 2017, 3, e202.	1.9	1
129	Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA. PLoS Genetics, 2017, 13, e1006628.	3.5	55
130	Compound heterozygous RMND1 gene variants associated with chronic kidney disease, dilated cardiomyopathy and neurological involvement: a case report. BMC Research Notes, 2016, 9, 325.	1.4	15
131	Biallelic Mutations in TMEM126B Cause Severe Complex I Deficiency with a Variable Clinical Phenotype. American Journal of Human Genetics, 2016, 99, 217-227.	6.2	57
132	Peripheral neuropathy in patients with CPEO associated with single and multiple mtDNA deletions. Neurology: Genetics, 2016, 2, e113.	1.9	12
133	The clinical, biochemical and genetic features associated with <i>RMND1</i> -related mitochondrial disease. Journal of Medical Genetics, 2016, 53, 768-775.	3.2	35
134	P35â€Histiocytoid cardiomyopathy and microphthalmia with linear skin defects syndrome: Phenotypes linked by truncating variants in <i>NDUFB11</i> . Heart, 2016, 102, A18.2-A18.	2.9	0
135	The frequency of the m.1555A > G (MTRNR1) variant in UK patients with suspected mitochondrial deafness. Hearing, Balance and Communication, 2016, 14, 101-102.	0.4	14
136	Cystic Leukoencephalopathy due to NDUFV1 mutation—A Report of the Phenotype and Its Rare Co-occurrence with Primary Hyperoxaluria. Journal of Pediatric Neurology, 2016, 14, 126-132.	0.2	0
137	A leaky splicing mutation in NFU1 is associated with a particular biochemical phenotype. Consequences for the diagnosis. Mitochondrion, 2016, 26, 72-80.	3.4	19
138	Homozygous deletion in <i>MICU1</i> presenting with fatigue and lethargy in childhood. Neurology: Genetics, 2016, 2, e59.	1.9	86
139	Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous <i>OPA1</i> mutation. Journal of Medical Genetics, 2016, 53, 127-131.	3.2	91
140	Clinical features of the pathogenic m.5540G>A mitochondrial transfer RNA tryptophan gene mutation. Neuromuscular Disorders, 2016, 26, 702-705.	0.6	6
141	Three families with â€~de novo' m.3243A>G mutation. BBA Clinical, 2016, 6, 19-24.	4.1	22
142	Impaired mitochondrial biogenesis is a common feature to myocardial hypertrophy and end-stage ischemic heart failure. Cardiovascular Pathology, 2016, 25, 103-112.	1.6	77
143	Complex mitochondrial DNA rearrangements in individual cells from patients with sporadic inclusion body myositis. Nucleic Acids Research, 2016, 44, 5313-5329.	14.5	37
144	Clinical, Genetic, and Radiological Features of Extrapyramidal Movement Disorders in Mitochondrial Disease. JAMA Neurology, 2016, 73, 668.	9.0	69

#	Article	IF	CITATIONS
145	Resveratrol attenuates oxidative stress in mitochondrial Complex I deficiency: Involvement of SIRT3. Free Radical Biology and Medicine, 2016, 96, 190-198.	2.9	47
146	The m.13051G>A mitochondrial DNA mutation results in variable neurology and activated mitophagy. Neurology, 2016, 86, 1921-1923.	1.1	35
147	Dysferlin mutations and mitochondrial dysfunction. Neuromuscular Disorders, 2016, 26, 782-788.	0.6	28
148	Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number. American Journal of Human Genetics, 2016, 99, 860-876.	6.2	93
149	Mitochondrial Protein Interaction Mapping Identifies Regulators of Respiratory Chain Function. Molecular Cell, 2016, 63, 621-632.	9.7	241
150	Pathogenic mtDNA mutations causing mitochondrial myopathy: The need for muscle biopsy. Neurology: Genetics, 2016, 2, e82.	1.9	24
151	Mitochondrial dysfunction in myofibrillar myopathy. Neuromuscular Disorders, 2016, 26, 691-701.	0.6	32
152	Investigating complex <scp>I</scp> deficiency in <scp>P</scp> urkinje cells and synapses in patients with mitochondrial disease. Neuropathology and Applied Neurobiology, 2016, 42, 477-492.	3.2	23
153	Lethal Neonatal LTBL Associated with Biallelic EARS2 Variants: Case Report and Review of the Reported Neuroradiological Features. JIMD Reports, 2016, 33, 61-68.	1.5	23
154	Epilepsy due to mutations in the mitochondrial polymerase gamma <i>(<scp>POLG</scp>)</i> gene: A clinical and molecular genetic review. Epilepsia, 2016, 57, 1531-1545.	5.1	58
155	Sudden Cardiac Death Due to Deficiency of the Mitochondrial Inorganic Pyrophosphatase PPA2. American Journal of Human Genetics, 2016, 99, 674-682.	6.2	48
156	Pseudoâ€obstruction, stroke, and mitochondrial dysfunction: A lethal combination. Annals of Neurology, 2016, 80, 686-692.	5.3	40
157	Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency. Nature Communications, 2016, 7, 12317.	12.8	106
158	The swinging pendulum of biomarkers in mitochondrial disease. Neurology, 2016, 87, 2286-2287.	1.1	5
159	A recurrent mitochondrial p.Trp22ArgNDUFB3variant causes a distinctive facial appearance, short stature and a mild biochemical and clinical phenotype. Journal of Medical Genetics, 2016, 53, 634-641.	3.2	31
160	Recessive Mutations in TRMT10C Cause Defects in Mitochondrial RNA Processing and Multiple Respiratory Chain Deficiencies. American Journal of Human Genetics, 2016, 98, 993-1000.	6.2	89
161	Both mitochondrial DNA and mitonuclear gene mutations cause hearing loss through cochlear dysfunction. Brain, 2016, 139, e33-e33.	7.6	15
162	Recurrent acute liver failure due to NBAS deficiency: phenotypic spectrum, disease mechanisms, and therapeutic concepts. Journal of Inherited Metabolic Disease, 2016, 39, 3-16.	3.6	92

#	Article	IF	CITATIONS
163	Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck. Human Molecular Genetics, 2016, 25, 1031-1041.	2.9	53
164	Sudden adult death syndrome in m.3243A>G-related mitochondrial disease: an unrecognized clinical entity in young, asymptomatic adults. European Heart Journal, 2016, 37, 2552-2559.	2.2	53
165	MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow DNA Replication in Mitochondria. PLoS Genetics, 2016, 12, e1005779.	3.5	67
166	Epilepsy in adults with mitochondrial disease: A cohort study. Annals of Neurology, 2015, 78, 949-957.	5.3	62
167	A novel immunofluorescent assay to investigate oxidative phosphorylation deficiency in mitochondrial myopathy: understanding mechanisms and improving diagnosis. Scientific Reports, 2015, 5, 15037.	3.3	104
168	Mitochondrial pathology in progressive cerebellar ataxia. Cerebellum and Ataxias, 2015, 2, 16.	1.9	37
169	Preliminary Evaluation of Clinician Rated Outcome Measures in Mitochondrial Disease. Journal of Neuromuscular Diseases, 2015, 2, 151-155.	2.6	8
170	Adult Onset Leigh Syndrome in the Intensive Care Setting: A Novel Presentation of a C12orf65 Related Mitochondrial Disease. Journal of Neuromuscular Diseases, 2015, 2, 409-419.	2.6	22
171	Triplex real-time PCR–an improved method to detect a wide spectrum of mitochondrial DNA deletions in single cells. Scientific Reports, 2015, 5, 9906.	3.3	30
172	A recessive homozygous p.Asp92Gly SDHD mutation causes prenatal cardiomyopathy and a severe mitochondrial complex II deficiency. Human Genetics, 2015, 134, 869-879.	3.8	49
173	Prevalence of nuclear and mitochondrial <scp>DNA</scp> mutations related to adult mitochondrial disease. Annals of Neurology, 2015, 77, 753-759.	5.3	706
174	<i>LRPPRC</i> mutations cause early-onset multisystem mitochondrial disease outside of the French-Canadian population. Brain, 2015, 138, 3503-3519.	7.6	81
175	Neuropathologic Characterization of Pontocerebellar Hypoplasia Type 6 Associated With Cardiomyopathy and Hydrops Fetalis and Severe Multisystem Respiratory Chain Deficiency due to Novel <i>RARS2</i> Mutations. Journal of Neuropathology and Experimental Neurology, 2015, 74, 688-703.	1.7	31
176	A novel mitochondrial DNA m.7507A>G mutation is only pathogenic at high levels of heteroplasmy. Neuromuscular Disorders, 2015, 25, 262-267.	0.6	9
177	Novel <i>MTND1</i> mutations cause isolated exercise intolerance, complex I deficiency and increased assembly factor expression. Clinical Science, 2015, 128, 895-904.	4.3	21
178	TRMT5 Mutations Cause a Defect in Post-transcriptional Modification of Mitochondrial tRNA Associated with Multiple Respiratory-Chain Deficiencies. American Journal of Human Genetics, 2015, 97, 319-328.	6.2	83
179	A novel m.7539C>T point mutation in the mt-tRNAAsp gene associated with multisystemic mitochondrial disease. Neuromuscular Disorders, 2015, 25, 81-84.	0.6	10
180	Clinical and Pathological Features of Mitochondrial DNA Deletion Disease Following Antiretroviral Treatment. JAMA Neurology, 2015, 72, 603.	9.0	3

#	Article	IF	CITATIONS
181	Biallelic Mutations in NBAS Cause Recurrent Acute Liver Failure with Onset in Infancy. American Journal of Human Genetics, 2015, 97, 163-169.	6.2	110
182	The GABA Transaminase, ABAT, Is Essential for Mitochondrial Nucleoside Metabolism. Cell Metabolism, 2015, 21, 417-427.	16.2	119
183	Clinical, morphological, biochemical, imaging and outcome parameters in 21 individuals with mitochondrial maintenance defect related to <i>FBXL4</i> mutations. Journal of Inherited Metabolic Disease, 2015, 38, 905-914.	3.6	45
184	Mutations causing mitochondrial disease: What is new and what challenges remain?. Science, 2015, 349, 1494-1499.	12.6	251
185	Complex I assembly function and fatty acid oxidation enzyme activity of ACAD9 both contribute to disease severity in ACAD9 deficiency. Human Molecular Genetics, 2015, 24, 3238-3247.	2.9	53
186	The presence of highly disruptive 16S rRNA mutations in clinical samples indicates a wider role for mutations of the mitochondrial ribosome in human disease. Mitochondrion, 2015, 25, 17-27.	3.4	29
187	Periventricular Calcification, Abnormal Pterins and Dry Thickened Skin: Expanding the Clinical Spectrum of RMND1?. JIMD Reports, 2015, 26, 13-19.	1.5	6
188	Pathogenic mitochondrial mt-tRNAAla variants are uniquely associated with isolated myopathy. European Journal of Human Genetics, 2015, 23, 1735-1738.	2.8	24
189	SANDO syndrome in a cohort of 107 patients with CPEO and mitochondrial DNA deletions. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 630-634.	1.9	113
190	Adult-onset Mendelian PEO Associated with Mitochondrial Disease. Journal of Neuromuscular Diseases, 2014, 1, 119-133.	2.6	19
191	Mutations in GTPBP3 Cause a Mitochondrial Translation Defect Associated with Hypertrophic Cardiomyopathy, Lactic Acidosis, and Encephalopathy. American Journal of Human Genetics, 2014, 95, 708-720.	6.2	123
192	A national perspective on prenatal testing for mitochondrial disease. European Journal of Human Genetics, 2014, 22, 1255-1259.	2.8	57
193	Defective i6A37 Modification of Mitochondrial and Cytosolic tRNAs Results from Pathogenic Mutations in TRIT1 and Its Substrate tRNA. PLoS Genetics, 2014, 10, e1004424.	3.5	112
194	Bmi1 enhances skeletal muscle regeneration through MT1-mediated oxidative stress protection in a mouse model of dystrophinopathy. Journal of Experimental Medicine, 2014, 211, 2617-2633.	8.5	34
195	Use of Whole-Exome Sequencing to Determine the Genetic Basis of Multiple Mitochondrial Respiratory Chain Complex Deficiencies. JAMA - Journal of the American Medical Association, 2014, 312, 68.	7.4	304
196	Dissecting the mechanisms underlying the accumulation of mitochondrial DNA deletions in human skeletal muscle. Human Molecular Genetics, 2014, 23, 4612-4620.	2.9	34
197	Mutations in APOPT1, Encoding a Mitochondrial Protein, Cause Cavitating Leukoencephalopathy with Cytochrome c Oxidase Deficiency. American Journal of Human Genetics, 2014, 95, 315-325.	6.2	64
198	Distal weakness with respiratory insufficiency caused by the m.8344A>G "MERRF―mutation. Neuromuscular Disorders, 2014, 24, 533-536.	0.6	26

#	Article	IF	CITATIONS
199	Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 56-64.	3.8	61
200	Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain, 2014, 137, 1323-1336.	7.6	151
201	Accurate Measurement of Mitochondrial DNA Deletion Level and Copy Number Differences in Human Skeletal Muscle. PLoS ONE, 2014, 9, e114462.	2.5	53
202	Adult-onset Mendelian PEO Associated with Mitochondrial Disease. Journal of Neuromuscular Diseases, 2014, 1, 119-133.	2.6	9
203	ELAC2 Mutations Cause a Mitochondrial RNA Processing Defect Associated with Hypertrophic Cardiomyopathy. American Journal of Human Genetics, 2013, 93, 211-223.	6.2	127
204	Pathogenic Mitochondrial t <scp>RNA</scp> Point Mutations: Nine Novel Mutations Affirm Their Importance as a Cause of Mitochondrial Disease. Human Mutation, 2013, 34, 1260-1268.	2.5	62
205	The UK MRC Mitochondrial Disease Patient Cohort Study: clinical phenotypes associated with the m.3243A>G mutation–implications for diagnosis and management. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 936-938.	1.9	193
206	Mutations in FBXL4 Cause Mitochondrial Encephalopathy and a Disorder of Mitochondrial DNA Maintenance. American Journal of Human Genetics, 2013, 93, 471-481.	6.2	137
207	Adults with RRM2B-related mitochondrial disease have distinct clinical and molecular characteristics. Brain, 2012, 135, 3392-3403.	7.6	70
208	Sensory neuronopathy in patients harbouring recessive polymerase Î ³ mutations. Brain, 2012, 135, 62-71.	7.6	60
209	Cardiomyopathy is common in patients with the mitochondrial DNA m.3243A>G mutation and correlates with mutation load. Neuromuscular Disorders, 2012, 22, 592-596.	0.6	34
210	MPV17 mutation causes neuropathy and leukoencephalopathy with multiple mtDNA deletions in muscle. Neuromuscular Disorders, 2012, 22, 587-591.	0.6	51
211	The clinical spectrum of the m.10191T>C mutation in complex lâ€deficient Leigh syndrome. Developmental Medicine and Child Neurology, 2012, 54, 500-506.	2.1	35
212	A p.R369G POLG2 mutation associated with adPEO and multiple mtDNA deletions causes decreased affinity between polymerase Î ³ subunits. Mitochondrion, 2012, 12, 313-319.	3.4	21
213	Mitochondrial DNA and disease. Journal of Pathology, 2012, 226, 274-286.	4.5	239
214	A comparative analysis approach to determining the pathogenicity of mitochondrial tRNA mutations. Human Mutation, 2011, 32, 1319-1325.	2.5	159
215	Mitochondrial tRNA mutations and disease. Wiley Interdisciplinary Reviews RNA, 2010, 1, 304-324.	6.4	145
216	Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain, 2009, 132, 3165-3174.	7.6	112

#	Article	IF	CITATIONS
217	Pathogenic mitochondrial tRNA mutations - Which mutations are inherited and why?. Human Mutation, 2009, 30, E984-E992.	2.5	49
218	What causes mitochondrial DNA deletions in human cells?. Nature Genetics, 2008, 40, 275-279.	21.4	334
219	Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain, 2008, 131, 329-337.	7.6	381
220	Mitochondrial DNA Transcription: Regulating the Power Supply. Cell, 2007, 130, 211-213.	28.9	14
221	Biochemical Assays of Respiratory Chain Complex Activity. Methods in Cell Biology, 2007, 80, 93-119.	1.1	324
222	High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature Genetics, 2006, 38, 515-517.	21.4	1,363
223	Mitochondrial DNA mutations in human disease. Nature Reviews Genetics, 2005, 6, 389-402.	16.3	1,530
224	Gene therapy for the treatment of mitochondrial DNA disorders. Expert Opinion on Biological Therapy, 2005, 5, 183-194.	3.1	9
225	The diagnosis of mitochondrial muscle disease. Neuromuscular Disorders, 2004, 14, 237-245.	0.6	178
226	Genotypes from patients indicate no paternal mitochondrial DNA contribution. Annals of Neurology, 2003, 54, 521-524.	5.3	76
227	A homoplasmic mitochondrial transfer Ribonucleic Acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 2003, 41, 1786-1796.	2.8	161
228	A novel Twinkle gene mutation in autosomal dominant progressive external ophthalmoplegia. Neuromuscular Disorders, 2003, 13, 568-572.	0.6	41
229	Mitochondrial DNA mutations in human colonic crypt stem cells. Journal of Clinical Investigation, 2003, 112, 1351-1360.	8.2	454
230	Detection and quantification of mitochondrial DNA deletions in individual cells by real-time PCR. Nucleic Acids Research, 2002, 30, 68e-68.	14.5	279
231	Leigh disease associated with a novel mitochondrial DNA ND5 mutation. European Journal of Human Genetics, 2002, 10, 141-144.	2.8	88
232	GRACILE Syndrome, a Lethal Metabolic Disorder with Iron Overload, Is Caused by a Point Mutation in BCS1L. American Journal of Human Genetics, 2002, 71, 863-876.	6.2	263
233	A novel mitochondrial DNA tRNAIle (A4267G) mutation in a sporadic patient with mitochondrial myopathy. Neuromuscular Disorders, 2002, 12, 659-664.	0.6	20
234	Progressive mitochondrial disease resulting from a novel missense mutation in the mitochondrial DNA ND3 gene. Annals of Neurology, 2001, 50, 104-107.	5.3	89

#	Article	IF	CITATIONS
235	Late-onset optic atrophy, ataxia, and myopathy associated with a mutation of a complex II gene. Annals of Neurology, 2000, 48, 330-335.	5.3	126
236	Lateâ€onset optic atrophy, ataxia, and myopathy associated with a mutation of a complex II gene. Annals of Neurology, 2000, 48, 330-335.	5.3	1
237	Nonrandom tissue distribution of mutant mtDNA. American Journal of Medical Genetics Part A, 1999, 85, 498-501.	2.4	90
238	Nonrandom tissue distribution of mutant mtDNA. , 1999, 85, 498.		1
239	A Novel Mitochondrial DNA Point Mutation in the tRNAlleGene: Studies in a Patient Presenting with Chronic Progressive External Ophthalmoplegia and Multiple Sclerosis. Biochemical and Biophysical Research Communications, 1998, 243, 47-51.	2.1	62
240	Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nature Genetics, 1997, 15, 212-215.	21.4	252
241	Treatment of mitochondrial disease. Journal of Bioenergetics and Biomembranes, 1997, 29, 195-205.	2.3	59