Stuart A Weinzimer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6113080/publications.pdf

Version: 2024-02-01

63 8,377 28 62 papers citations h-index g-index

67 67 5811 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Technology Utilization in Black Adolescents with Type 1 Diabetes: Exploring the Decision-Making Process. Diabetes Technology and Therapeutics, 2022, 24, 249-257.	4.4	12
2	Congenital hyperinsulinism in infancy and childhood: challenges, unmet needs and the perspective of patients and families. Orphanet Journal of Rare Diseases, 2022, 17, 61.	2.7	19
3	Dasiglucagon demonstrates reduced costs in the treatment of severe hypoglycemia in a budget impact model. Journal of Managed Care & Decialty Pharmacy, 2022, 28, 461-472.	0.9	3
4	Innovative features and functionalities of an artificial pancreas system: What do youth and parents want?. Diabetic Medicine, 2021, 38, e14492.	2.3	3
5	Predictors of Time-in-Range (70–180 mg/dL) Achieved Using a Closed-Loop Control System. Diabetes Technology and Therapeutics, 2021, 23, 475-481.	4.4	36
6	Practical Diabetes Technology: Overcoming Barriers in the Real World. Diabetes Technology and Therapeutics, 2021, 23, S-159-S-168.	4.4	3
7	Evaluation of Web-Based and In-Person Methods to Recruit Adults With Type 1 Diabetes for a Mobile Exercise Intervention: Prospective Observational Study. JMIR Diabetes, 2021, 6, e28309.	1.9	9
8	Lived Experience of Advanced Hybrid Closed-Loop Versus Hybrid Closed-Loop: Patient-Reported Outcomes and Perspectives. Diabetes Technology and Therapeutics, 2021, 23, 857-861.	4.4	28
9	Bayesian structural time series for biomedical sensor data: A flexible modeling framework for evaluating interventions. PLoS Computational Biology, 2021, 17, e1009303.	3.2	8
10	Youth and parent preferences for an ideal <scp>AP</scp> system: It is all about reducing burden. Pediatric Diabetes, 2021, 22, 1063-1070.	2.9	8
11	Establishing a Global Standard for Wearable Devices in Sport and Exercise Medicine: Perspectives from Academic and Industry Stakeholders. Sports Medicine, 2021, 51, 2237-2250.	6.5	12
12	Extended Use of the Control-IQ Closed-Loop Control System in Children With Type 1 Diabetes. Diabetes Care, 2021, 44, 473-478.	8.6	28
13	Fellows as Medical Educators: Implementation and Evaluation of a Curriculum to Improve Pediatric Fellow Teaching Skills. Academic Pediatrics, 2020, 20, 140-142.	2.0	4
14	Effect of Afrezza on Glucose Dynamics During HCL Treatment. Diabetes Care, 2020, 43, 2146-2152.	8.6	12
15	Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. Nature Medicine, 2020, 26, 1380-1384.	30.7	127
16	Brain Function Differences in Children With Type 1 Diabetes: A Functional MRI Study of Working Memory. Diabetes, 2020, 69, 1770-1778.	0.6	15
17	Practical Implementation of Diabetes Technology: Realâ€World Use. Diabetes Technology and Therapeutics, 2020, 22, S-119-S-129.	4.4	3
18	Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care, 2019, 42, 1593-1603.	8.6	2,101

#	Article	IF	Citations
19	Effect of Injection Site Cooling and Warming on Insulin Glargine Pharmacokinetics and Pharmacodynamics. Journal of Diabetes Science and Technology, 2019, 13, 1123-1128.	2.2	2
20	Feasibility and safety of a group physical activity program for youth with type 1 diabetes. Pediatric Diabetes, 2019, 20, 450-459.	2.9	9
21	Impact of Early Diabetic Ketoacidosis on the Developing Brain. Diabetes Care, 2019, 42, 443-449.	8.6	77
22	Longitudinal assessment of hippocampus structure in children with type 1 diabetes. Pediatric Diabetes, 2018, 19, 1116-1123.	2.9	23
23	Optimizing Hybrid Closed-Loop Therapy in Adolescents and Emerging Adults Using the MiniMed 670G System. Diabetes Care, 2018, 41, 789-796.	8.6	101
24	Pramlintide but Not Liraglutide Suppresses Meal-Stimulated Glucagon Responses in Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 1088-1094.	3.6	19
25	Schooling diabetes: Use of continuous glucose monitoring and remote monitors in the home and school settings. Pediatric Diabetes, 2018, 19, 92-97.	2.9	42
26	The dawn of automated insulin delivery: A new clinical framework to conceptualize insulin administration. Pediatric Diabetes, 2018, 19, 14-17.	2.9	23
27	An Effective Diabetic Ketoacidosis Prevention Intervention in Children With Type 1 Diabetes. SAGE Open Nursing, 2018, 4, 237796081880474.	1.2	2
28	Psychosocial and Human Factors During a Trial of a Hybrid Closed Loop System for Type 1 Diabetes Management. Diabetes Technology and Therapeutics, 2018, 20, 648-653.	4.4	29
29	Type 1 Diabetes in Children and Adolescents: A Position Statement by the American Diabetes Association. Diabetes Care, 2018, 41, 2026-2044.	8.6	288
30	Predictive Low-Glucose Suspend Reduces Hypoglycemia in Adults, Adolescents, and Children With Type 1 Diabetes in an At-Home Randomized Crossover Study: Results of the PROLOG Trial. Diabetes Care, 2018, 41, 2155-2161.	8.6	184
31	Automated hybrid closed-loop control with a proportional-integral-derivative based system in adolescents and adults with type 1 diabetes: individualizing settings for optimal performance. Pediatric Diabetes, 2017, 18, 348-355.	2.9	46
32	Evaluation of a Predictive Low-Glucose Management System In-Clinic. Diabetes Technology and Therapeutics, 2017, 19, 288-292.	4.4	46
33	Expectations and Attitudes of Individuals With Type 1 Diabetes After Using a Hybrid Closed Loop System. The Diabetes Educator, 2017, 43, 223-232.	2.5	78
34	Altered Patterns of Early Metabolic Decompensation in Type 1 Diabetes During Treatment with a SGLT2 Inhibitor: An Insulin Pump Suspension Study. Diabetes Technology and Therapeutics, 2017, 19, 618-622.	4.4	24
35	International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care, 2017, 40, 1631-1640.	8.6	1,376
36	Compensatory Hyperconnectivity in Developing Brains of Young Children With Type 1 Diabetes. Diabetes, 2017, 66, 754-762.	0.6	25

#	Article	IF	CITATIONS
37	A Practical Approach to Using Trend Arrows on the Dexcom G5 CGM System to Manage Children and Adolescents With Diabetes. Journal of the Endocrine Society, 2017, 1, 1461-1476.	0.2	53
38	Changes in beta cell function during the proximate post-diagnosis period in persons with type 1 diabetes. Pediatric Diabetes, 2016, 17, 237-243.	2.9	11
39	Outcome Measures for Artificial Pancreas Clinical Trials: A Consensus Report. Diabetes Care, 2016, 39, 1175-1179.	8.6	195
40	Mitigating Reductions in Glucose During Exercise on Closed-Loop Insulin Delivery: The Ex-Snacks Study. Diabetes Technology and Therapeutics, 2016, 18, 794-799.	4.4	32
41	Effects of Frequency of Sensor-Augmented Pump Use on HbA1cand C-Peptide Levels in the First Year of Type 1 Diabetes. Diabetes Care, 2016, 39, e61-e62.	8.6	5
42	Mitigating Meal-Related Glycemic Excursions in an Insulin-Sparing Manner During Closed-Loop Insulin Delivery: The Beneficial Effects of Adjunctive Pramlintide and Liraglutide. Diabetes Care, 2016, 39, 1127-1134.	8.6	75
43	Altered Integration of Structural Covariance Networks in Young Children With Type 1 Diabetes. Human Brain Mapping, 2016, 37, 4034-4046.	3.6	23
44	Safety of a Hybrid Closed-Loop Insulin Delivery System in Patients With Type 1 Diabetes. JAMA - Journal of the American Medical Association, 2016, 316, 1407.	7.4	515
45	Life With Type 1 Diabetes. The Diabetes Educator, 2016, 42, 408-417.	2.5	9
46	Variations in Brain Volume and Growth in Young Children With Type 1 Diabetes. Diabetes, 2016, 65, 476-485.	0.6	64
47	Longitudinal Assessment of Neuroanatomical and Cognitive Differences in Young Children With Type 1 Diabetes: Association With Hyperglycemia. Diabetes, 2015, 64, 1770-1779.	0.6	107
48	Evolution of Abnormal Plasma Glucagon Responses to Mixed-Meal Feedings in Youth With Type 1 Diabetes During the First 2 Years After Diagnosis. Diabetes Care, 2014, 37, 1741-1744.	8.6	38
49	Effect of Pramlintide on Prandial Glycemic Excursions During Closed-Loop Control in Adolescents and Young Adults With Type 1 Diabetes. Diabetes Care, 2012, 35, 1994-1999.	8.6	124
50	Closed-loop artificial pancreas. Current Opinion in Endocrinology, Diabetes and Obesity, 2012, 19, 88-92.	2.3	12
51	Analysis: High-Tech Diabetes Technology and the Myth of Clinical "Plug and Play― Journal of Diabetes Science and Technology, 2010, 4, 1465-1467.	2.2	2
52	Fully Automated Closed-Loop Insulin Delivery Versus Semiautomated Hybrid Control in Pediatric Patients With Type 1 Diabetes Using an Artificial Pancreas. Diabetes Care, 2008, 31, 934-939.	8.6	510
53	FreeStyle Navigator Continuous Glucose Monitoring System Use in Children With Type 1 Diabetes Using Glargine-Based Multiple Daily Dose Regimens. Diabetes Care, 2008, 31, 525-527.	8.6	69
54	A Randomized Trial Comparing Continuous Subcutaneous Insulin Infusion of Insulin Aspart Versus Insulin Lispro in Children and Adolescents With Type 1 Diabetes. Diabetes Care, 2008, 31, 210-215.	8.6	51

#	Article	IF	CITATION
55	Continuous Glucose Monitoring and Intensive Treatment of Type 1 Diabetes. New England Journal of Medicine, 2008, 359, 1464-1476.	27.0	1,369
56	Sensor-augmented pump therapy in type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2008, 15, $118-122$.	2.3	20
57	Emerging evidence for the use of insulin pump therapy in infants, toddlers, and preschool-aged children with type 1 diabetes. Pediatric Diabetes, 2006, 7, 15-19.	2.9	37
58	Analysis: How to Inspect When She's Expecting: Use of Continuous Glucose Monitoring in Diabetes During Pregnancy. Diabetes Technology and Therapeutics, 2005, 7, 707-709.	4.4	7
59	Disease Management in the Young Diabetic Patient: Glucose Monitoring, Coping Skills, and Treatment Strategies. Clinical Pediatrics, 2005, 44, 393-403.	0.8	17
60	Insulin Pump Treatment of Childhood Type 1 Diabetes. Pediatric Clinics of North America, 2005, 52, 1677-1688.	1.8	14
61	Persistence of Benefits of Continuous Subcutaneous Insulin Infusion in Very Young Children With Type 1 Diabetes: A Follow-up Report. Pediatrics, 2004, 114, 1601-1605.	2.1	152
62	Continuous glucose monitoring in type 1 diabetes. Current Diabetes Reports, 2004, 4, 95-100.	4.2	10
63	Analysis of Continuous Glucose Monitoring Data from Non-Diabetic and Diabetic Children: A Tale of Two Algorithms. Diabetes Technology and Therapeutics, 2003, 5, 375-380.	4.4	27