

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/611276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two-dimensional metal-organic framework nanosheet composites: Preparations and applications. Chinese Chemical Letters, 2022, 33, 693-702.	9.0	51
2	The biomimetic engineering of metal–organic frameworks with single-chiral-site precision for asymmetric hydrogenation. Journal of Materials Chemistry A, 2022, 10, 6463-6469.	10.3	14
3	Phase engineering of metalâ€organic frameworks. Aggregate, 2022, 3, e145.	9.9	15
4	Isoreticular Series of Two-Dimensional Covalent Organic Frameworks with the kgd Topology and Controllable Micropores. Journal of the American Chemical Society, 2022, 144, 6475-6482.	13.7	41
5	Organic/inorganic anions coupling enabled reversible high-valent redox in vanadium-based polyanionic compound. Energy Storage Materials, 2022, 47, 526-533.	18.0	15
6	Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications. Nano Research, 2022, 15, 3514-3532.	10.4	46
7	Metal–organic frameworks based on infinite secondary building units: recent progress and future outlooks. Journal of Materials Chemistry A, 2022, 10, 19320-19347.	10.3	11
8	Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Research, 2021, 14, 2037.	10.4	95
9	Engineering Nanoscale Metalâ€Organic Frameworks for Heterogeneous Catalysis. Small Structures, 2021, 2, 2000141.	12.0	28
10	Manganeseâ€Based Materials for Rechargeable Batteries beyond Lithiumâ€Ion. Advanced Energy Materials, 2021, 11, 2100867.	19.5	95
11	Shape-Dependent Linear Dichroism Spectra of Colloidal Semiconductor Nanocrystals. Langmuir, 2021, 37, 7611-7616.	3.5	3
12	Metal–Organic Framework-Based Solid Acid Materials for Biomass Upgrade. Transactions of Tianjin University, 2021, 27, 434-449.	6.4	18
13	Metal–organic frameworks as catalytic selectivity regulators for organic transformations. Chemical Society Reviews, 2021, 50, 5366-5396.	38.1	130
14	Polymer-Assisted Space-Confined Strategy for the Foot-Scale Synthesis of Flexible Metal–Organic Framework-Based Composite Films. Journal of the American Chemical Society, 2021, 143, 17526-17534.	13.7	17
15	An Enhanced Reduction–Adsorption Strategy for Cr(VI): Fabrication and Application of <scp>L</scp> -Cysteine-doped Carbon@Polypyrrole with a Core/Shell Composite Structure. Langmuir, 2020, 36, 11508-11516.	3.5	16
16	Boosting CO2 Conversion with Terminal Alkynes by Molecular Architecture of Graphene Oxide-Supported Ag Nanoparticles. Matter, 2020, 3, 558-570.	10.0	42
17	Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Research, 2020, 13, 1928-1932.	10.4	46
18	Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO ₂ cycloaddition. Science Advances, 2020, 6, eaaz4824.	10.3	68

Jun Guo

#	Article	IF	CITATIONS
19	Reordering d Orbital Energies of Singleâ€Site Catalysts for CO ₂ Electroreduction. Angewandte Chemie, 2019, 131, 12841-12846.	2.0	40
20	Ultrathin Chiral Metal–Organicâ€Framework Nanosheets for Efficient Enantioselective Separation. Angewandte Chemie - International Edition, 2018, 57, 6873-6877.	13.8	115
21	Tunable chiral metal organic frameworks toward visible light–driven asymmetric catalysis. Science Advances, 2017, 3, e1701162.	10.3	136
22	Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539, 76-80.	27.8	1,201