Jenny Shoots

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6112223/publications.pdf

Version: 2024-02-01

1478505 1720034 7 176 6 7 citations h-index g-index papers 9 9 9 214 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ldentification and Validation of QTL for Grain Quality Traits in a Cross of Soft Wheat Cultivars Pioneer Brand 25R26 and Foster. Crop Science, 2011, 51, 1424-1436.	1.8	45
2	NAD+ loss, a new player in AhR biology: prevention of thymus atrophy and hepatosteatosis by NAD+ repletion. Scientific Reports, 2017, 7, 2268.	3.3	33
3	Plant cell mechanobiology: Greater than the sum of its parts. Plant Cell, 2022, 34, 129-145.	6.6	27
4	Nonpolar residues in the presumptive poreâ€lining helix of mechanosensitive channel MSL10 influence channel behavior and establish a nonconducting function. Plant Direct, 2018, 2, e00059.	1.9	24
5	Interactions between the N- and C-termini of the mechanosensitive ion channel <i>At</i> MSL10 are consistent with a three-step mechanism for activation. Journal of Experimental Botany, 2020, 71, 4020-4032.	4.8	24
6	An Aryl Hydrocarbon Receptor from the Salamander <i>Ambystoma mexicanum</i> Exhibits Low Sensitivity to 2,3,7,8-Tetrachlorodibenzo <i>-p</i> dioxin. Environmental Science & En	10.0	13
7	The Mechanosensitive Ion Channel MSL10 Modulates Susceptibility to <i>Pseudomonas syringae</i> in <i>Arabidopsis thaliana</i> Molecular Plant-Microbe Interactions, 2022, 35, 567-582.	2.6	7