Jason W Locasale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6112044/publications.pdf Version: 2024-02-01

	5896	5829
29,244	81	161
citations	h-index	g-index
236	236	40096
docs citations	times ranked	citing authors
	citations 236	29,244 81 citations h-index 236 236

#	Article	IF	CITATIONS
1	Abstract P5-05-01: Metabolite profiling and RNA-seq identifies novel metabolomic-genomic biomarker and therapeutic options for rapidly proliferating breast cancers. Cancer Research, 2022, 82, P5-05-01-P5-05-01.	0.9	0
2	Integrated Metabolic Profiling and Transcriptional Analysis Reveals Therapeutic Modalities for Targeting Rapidly Proliferating Breast Cancers. Cancer Research, 2022, 82, 665-680.	0.9	5
3	MNK2 deficiency potentiates β-cell regeneration via translational regulation. Nature Chemical Biology, 2022, 18, 942-953.	8.0	9
4	13C tracer analysis suggests extensive recycling of endogenous CO2 in vivo. Cancer & Metabolism, 2022, 10, .	5.0	11
5	Targeting metabolism to influence aging. Science, 2021, 371, 234-235.	12.6	9
6	Targeting In Vivo Metabolic Vulnerabilities of Th2 and Th17 Cells Reduces Airway Inflammation. Journal of Immunology, 2021, 206, 1127-1139.	0.8	16
7	Metabolomics: insights into plantâ€based diets. EMBO Molecular Medicine, 2021, 13, e13568.	6.9	5
8	A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
9	Metabolic supervision by PPIP5K, an inositol pyrophosphate kinase/phosphatase, controls proliferation of the HCT116 tumor cell line. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
10	SGK1 signaling promotes glucose metabolism and survival in extracellular matrix detached cells. Cell Reports, 2021, 34, 108821.	6.4	32
11	Metabolomics in cancer research and emerging applications in clinical oncology. Ca-A Cancer Journal for Clinicians, 2021, 71, 333-358.	329.8	267
12	PKM1 Exerts Critical Roles in Cardiac Remodeling Under Pressure Overload in the Heart. Circulation, 2021, 144, 712-727.	1.6	23
13	Metabolic decisions in development and disease—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 55-73.	3.8	6
14	Epigenomic links from metabolism—methionine and chromatin architecture. Current Opinion in Chemical Biology, 2021, 63, 11-18.	6.1	5
15	Cellular stress signaling activates type-I IFN response through FOXO3-regulated lamin posttranslational modification. Nature Communications, 2021, 12, 640.	12.8	22
16	The TGF-β/HDAC7 axis suppresses TCA cycle metabolism in renal cancer. JCI Insight, 2021, 6, .	5.0	9
17	Tumor-induced reshuffling of lipid composition on the endoplasmic reticulum membrane sustains macrophage survival and pro-tumorigenic activity. Nature Immunology, 2021, 22, 1403-1415.	14.5	72
18	Rethinking the bioavailability and cellular transport properties of S-adenosylmethionine. Cell Stress, 2021 6 1-5	3.2	10

#	Article	IF	CITATIONS
19	Cancer Metabolism. , 2020, , 127-138.e4.		3
20	Histone Lactylation: A New Role for Glucose Metabolism. Trends in Biochemical Sciences, 2020, 45, 179-182.	7.5	62
21	Evolved resistance to partial GAPDH inhibition results in loss of the Warburg effect and in a different state of glycolysis. Journal of Biological Chemistry, 2020, 295, 111-124.	3.4	11
22	Quantitative Analysis of the Physiological Contributions of Glucose to the TCA Cycle. Cell Metabolism, 2020, 32, 619-628.e21.	16.2	36
23	Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. Nature Immunology, 2020, 21, 1540-1551.	14.5	252
24	Identification of BBOX1 as a Therapeutic Target in Triple-Negative Breast Cancer. Cancer Discovery, 2020, 10, 1706-1721.	9.4	35
25	SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease. Nature Communications, 2020, 11, 5927.	12.8	35
26	HNF4α regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer. Nature Communications, 2020, 11, 3978.	12.8	73
27	A spoonful of DHAP keeps mTORC1 running on sugars. Nature Metabolism, 2020, 2, 801-802.	11.9	2
28	Teleological Role of L-2-Hydroxyglutarate Dehydrogenase in the Kidney. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	8
29	The evolving metabolic landscape of chromatin biology and epigenetics. Nature Reviews Genetics, 2020, 21, 737-753.	16.3	255
30	The Molecular Link from Diet to Cancer Cell Metabolism. Molecular Cell, 2020, 78, 1034-1044.	9.7	52
31	Epigenetic Switch–Induced Viral Mimicry Evasion in Chemotherapy-Resistant Breast Cancer. Cancer Discovery, 2020, 10, 1312-1329.	9.4	84
32	Using antagonistic pleiotropy to design a chemotherapy-induced evolutionary trap to target drug resistance in cancer. Nature Genetics, 2020, 52, 408-417.	21.4	47
33	Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nature Cell Biology, 2020, 22, 310-320.	10.3	189
34	Metabolism in the tumor microenvironment: insights from single-cell analysis. Oncolmmunology, 2020, 9, 1726556.	4.6	13
35	Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway. Cell Metabolism, 2020, 31, 564-579.e7.	16.2	130
36	Dynamic 13C Flux Analysis Captures the Reorganization of Adipocyte Glucose Metabolism in Response to Insulin. IScience, 2020, 23, 100855.	4.1	24

#	Article	IF	CITATIONS
37	Metabolic regulation of epigenetic remodeling in immune cells. Current Opinion in Biotechnology, 2020, 63, 111-117.	6.6	21
38	Dietary Methionine in T Cell Biology and Autoimmune Disease. Cell Metabolism, 2020, 31, 211-212.	16.2	8
39	NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nature Metabolism, 2020, 2, 318-334.	11.9	106
40	A reactive metabolite as an immune suppressant. Nature Immunology, 2020, 21, 497-498.	14.5	3
41	Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses. Nature Immunology, 2019, 20, 1186-1195.	14.5	126
42	Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature, 2019, 572, 397-401.	27.8	422
43	Nutrient availability shapes methionine metabolism in p16/ <i>MTAP</i> -deleted cells. Science Advances, 2019, 5, eaav7769.	10.3	23
44	Cutting Edge: Elevated Glycolytic Metabolism Limits the Formation of Memory CD8+ T Cells in Early Life. Journal of Immunology, 2019, 203, 2571-2576.	0.8	17
45	Discovery of a Potent GLUT Inhibitor from a Library of Rapafucins by Using 3D Microarrays. Angewandte Chemie, 2019, 131, 17318-17322.	2.0	5
46	Discovery of a Potent GLUT Inhibitor from a Library of Rapafucins by Using 3D Microarrays. Angewandte Chemie - International Edition, 2019, 58, 17158-17162.	13.8	22
47	Metabolic landscape of the tumor microenvironment at single cell resolution. Nature Communications, 2019, 10, 3763.	12.8	290
48	Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nature Reviews Cancer, 2019, 19, 625-637.	28.4	278
49	SPHK1 Is a Novel Target of Metformin in Ovarian Cancer. Molecular Cancer Research, 2019, 17, 870-881.	3.4	50
50	Myeloid <i>Slc2a1</i> -Deficient Murine Model Revealed Macrophage Activation and Metabolic Phenotype Are Fueled by GLUT1. Journal of Immunology, 2019, 202, 1265-1286.	0.8	104
51	Impaired enolase 1 glycolytic activity restrains effector functions of tumor-infiltrating CD8 ⁺ T cells. Science Immunology, 2019, 4, .	11.9	95
52	A Genome-wide Haploid Genetic Screen Identifies Regulators of Glutathione Abundance and Ferroptosis Sensitivity. Cell Reports, 2019, 26, 1544-1556.e8.	6.4	146
53	Inhibition of ERRα Prevents Mitochondrial Pyruvate Uptake Exposing NADPH-Generating Pathways as Targetable Vulnerabilities in Breast Cancer. Cell Reports, 2019, 27, 3587-3601.e4.	6.4	29
54	Acetate Metabolism in Physiology, Cancer, and Beyond. Trends in Cell Biology, 2019, 29, 695-703.	7.9	122

#	Article	IF	CITATIONS
55	Serine and Methionine Metabolism: Vulnerabilities in Lethal Prostate Cancer. Cancer Cell, 2019, 35, 339-341.	16.8	16
56	Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature, 2019, 568, 254-258.	27.8	233
57	T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science, 2019, 363, .	12.6	355
58	MiR-135 suppresses glycolysis and promotes pancreatic cancer cell adaptation to metabolic stress by targeting phosphofructokinase-1. Nature Communications, 2019, 10, 809.	12.8	96
59	Prolyl hydroxylase substrate adenylosuccinate lyase is an oncogenic driver in triple negative breast cancer. Nature Communications, 2019, 10, 5177.	12.8	27
60	Fibroblasts Mobilize Tumor Cell Glycogen to Promote Proliferation and Metastasis. Cell Metabolism, 2019, 29, 141-155.e9.	16.2	192
61	IDH3α regulates one-carbon metabolism in glioblastoma. Science Advances, 2019, 5, eaat0456.	10.3	59
62	The Nucleotide Sensor ZBP1 and Kinase RIPK3 Induce the Enzyme IRG1 to Promote an Antiviral Metabolic State in Neurons. Immunity, 2019, 50, 64-76.e4.	14.3	214
63	Lin28a Regulates Pathological Cardiac Hypertrophic Growth Through Pck2-Mediated Enhancement of Anabolic Synthesis. Circulation, 2019, 139, 1725-1740.	1.6	32
64	Antigen receptor control of methionine metabolism in T cells. ELife, 2019, 8, .	6.0	132
65	Abstract 792: Acetate production from glucose and coupling to mitochondrial metabolism in mammals. , 2019, , .		0
66	Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nature Cell Biology, 2018, 20, 597-609.	10.3	306
67	Paracrine Wnt5a-β-Catenin Signaling Triggers a Metabolic Program that Drives Dendritic Cell Tolerization. Immunity, 2018, 48, 147-160.e7.	14.3	185
68	New concepts in feedback regulation of glucose metabolism. Current Opinion in Systems Biology, 2018, 8, 32-38.	2.6	28
69	Serine Availability Influences Mitochondrial Dynamics and Function through Lipid Metabolism. Cell Reports, 2018, 22, 3507-3520.	6.4	170
70	Glucose Metabolism in Cancer: The Saga of Pyruvate Kinase Continues. Cancer Cell, 2018, 33, 337-339.	16.8	39
71	<scp>FOXO</scp> protects against ageâ€progressive axonal degeneration. Aging Cell, 2018, 17, e12701.	6.7	52
72	Exercise inhibits tumor growth and central carbon metabolism in patient-derived xenograft models of colorectal cancer. Cancer & Metabolism, 2018, 6, 14.	5.0	22

#	Article	IF	CITATIONS
73	Revisiting the Warburg Effect: Some Tumors Hold Their Breath. Cell Metabolism, 2018, 28, 669-670.	16.2	52
74	Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nature Communications, 2018, 9, 5442.	12.8	143
75	Loss of pyruvate kinase M2 limits growth and triggers innate immune signaling in endothelial cells. Nature Communications, 2018, 9, 4077.	12.8	55
76	Thermodynamic constraints on the regulation of metabolic fluxes. Journal of Biological Chemistry, 2018, 293, 19725-19739.	3.4	18
77	Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell, 2018, 175, 1780-1795.e19.	28.9	445
78	Acetate Production from Glucose and Coupling to Mitochondrial Metabolism in Mammals. Cell, 2018, 175, 502-513.e13.	28.9	269
79	Methionine metabolism influences genomic architecture and gene expression through H3K4me3 peak width. Nature Communications, 2018, 9, 1955.	12.8	96
80	p300-Mediated Lysine 2-Hydroxyisobutyrylation Regulates Glycolysis. Molecular Cell, 2018, 70, 663-678.e6.	9.7	126
81	Ablation of Sirtuin5 in the postnatal mouse heart results in protein succinylation and normal survival in response to chronic pressure overload. Journal of Biological Chemistry, 2018, 293, 10630-10645.	3.4	31
82	Pentose conversions support the tumorigenesis of pancreatic cancer distant metastases. Oncogene, 2018, 37, 5248-5256.	5.9	19
83	mTOR coordinates transcriptional programs and mitochondrial metabolism of activated Treg subsets to protect tissue homeostasis. Nature Communications, 2018, 9, 2095.	12.8	133
84	Abstract 5496: A predictive model for selective targeting of the Warburg effect through GAPDH inhibition with a natural product. , 2018, , .		0
85	Abstract 388: p16/MTAP status as a model for investigating gene-environment interactions in metabolism. , 2018, , .		Ο
86	Abstract 415: Lin28a Regulates Pathological Cardiac Hypertrophic Growth Through Pck2-mediated Enhancement of Anabolic Synthesis. Circulation Research, 2018, 123, .	4.5	0
87	Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nature Genetics, 2017, 49, 367-376.	21.4	365
88	Glutamine Metabolism in Cancer: Understanding the Heterogeneity. Trends in Cancer, 2017, 3, 169-180.	7.4	472
89	Metabolic pattern formation in the tumorÂmicroenvironment. Molecular Systems Biology, 2017, 13, 915.	7.2	11
90	Metabolomics: A Primer. Trends in Biochemical Sciences, 2017, 42, 274-284.	7.5	273

#	Article	IF	CITATIONS
91	Metabolomics reveals intratumor heterogeneity – Implications for precision medicine. EBioMedicine, 2017, 19, 4-5.	6.1	7
92	Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord. Current Biology, 2017, 27, 1982-1989.e3.	3.9	83
93	Purine synthesis promotes maintenance of brain tumor initiating cells in glioma. Nature Neuroscience, 2017, 20, 661-673.	14.8	153
94	Rational Design of Selective Allosteric Inhibitors of PHGDH and Serine Synthesis with Anti-tumor Activity. Cell Chemical Biology, 2017, 24, 55-65.	5.2	102
95	Short term methionine restriction increases hepatic global DNA methylation in adult but not young male C57BL/6J mice. Experimental Gerontology, 2017, 88, 1-8.	2.8	43
96	A Missing Link to Vitamin B12 Metabolism. Cell, 2017, 171, 736-737.	28.9	7
97	Sirtuin 5 is required for mouse survival in response to cardiac pressure overload. Journal of Biological Chemistry, 2017, 292, 19767-19781.	3.4	79
98	Methionine metabolism is essential for <scp>SIRT</scp> 1â€regulated mouse embryonic stem cell maintenance and embryonic development. EMBO Journal, 2017, 36, 3175-3193.	7.8	71
99	The impact of cellular metabolism on chromatin dynamics and epigenetics. Nature Cell Biology, 2017, 19, 1298-1306.	10.3	369
100	A Predictive Model for Selective Targeting of the Warburg Effect through GAPDH Inhibition with a Natural Product. Cell Metabolism, 2017, 26, 648-659.e8.	16.2	154
101	A toxin that fuels metabolism. Nature, 2017, 548, 533-534.	27.8	2
102	Melanoma Therapeutic Strategies that Select against Resistance by Exploiting MYC-Driven Evolutionary Convergence. Cell Reports, 2017, 21, 2796-2812.	6.4	77
103	Understanding metabolism with flux analysis: From theory to application. Metabolic Engineering, 2017, 43, 94-102.	7.0	73
104	Metabolic interactions with cancer epigenetics. Molecular Aspects of Medicine, 2017, 54, 50-57.	6.4	40
105	Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich's ataxia cardiomyopathy model. JCI Insight, 2017, 2, .	5.0	96
106	Molecular features that predict the response to antimetabolite chemotherapies. Cancer & Metabolism, 2017, 5, 8.	5.0	13
107	RRmix: A method for simultaneous batch effect correction and analysis of metabolomics data in the absence of internal standards. PLoS ONE, 2017, 12, e0179530.	2.5	19
108	Differential response to exercise in claudin-low breast cancer. Oncotarget, 2017, 8, 100989-101004.	1.8	15

#	Article	IF	CITATIONS
109	Serine Metabolism Links Tumor Suppression to the Epigenetic Landscape. Cell Metabolism, 2016, 24, 777-779.	16.2	14
110	Integrative modelling of tumour DNA methylation quantifies the contribution of metabolism. Nature Communications, 2016, 7, 13666.	12.8	37
111	Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4320-4325.	7.1	263
112	The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nature Cell Biology, 2016, 18, 645-656.	10.3	176
113	ERRα-Regulated Lactate Metabolism Contributes to Resistance to Targeted Therapies in Breast Cancer. Cell Reports, 2016, 15, 323-335.	6.4	113
114	AMPK Is Essential to Balance Glycolysis and Mitochondrial Metabolism to Control T-ALL Cell Stress and Survival. Cell Metabolism, 2016, 23, 649-662.	16.2	195
115	A Flux Balance of Clucose Metabolism Clarifies the Requirements of the Warburg Effect. Biophysical Journal, 2016, 111, 1088-1100.	0.5	42
116	Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nature Immunology, 2016, 17, 1459-1466.	14.5	402
117	Targeting One Carbon Metabolism with an Antimetabolite Disrupts Pyrimidine Homeostasis and Induces Nucleotide Overflow. Cell Reports, 2016, 15, 2367-2376.	6.4	33
118	One arbon metabolism and epigenetics: understanding the specificity. Annals of the New York Academy of Sciences, 2016, 1363, 91-98.	3.8	289
119	Effects of a block in cysteine catabolism on energy balance and fat metabolism in mice. Annals of the New York Academy of Sciences, 2016, 1363, 99-115.	3.8	12
120	IKKβ promotes metabolic adaptation to glutamine deprivation via phosphorylation and inhibition of PFKFB3. Genes and Development, 2016, 30, 1837-1851.	5.9	45
121	mTORC1 and mTORC2 Kinase Signaling and Glucose Metabolism Drive Follicular Helper T Cell Differentiation. Immunity, 2016, 45, 540-554.	14.3	283
122	Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histoneÂdemethylation. Nature Cell Biology, 2016, 18, 1090-1101.	10.3	291
123	A new layer of glycolysis. Nature Chemical Biology, 2016, 12, 577-578.	8.0	11
124	Metformin Targets Central Carbon Metabolism and Reveals Mitochondrial Requirements in Human Cancers. Cell Metabolism, 2016, 24, 728-739.	16.2	192
125	The Warburg Effect: How Does it Benefit Cancer Cells?. Trends in Biochemical Sciences, 2016, 41, 211-218.	7.5	3,019
126	The Lipid Kinase PI5P4Kβ Is an Intracellular GTP Sensor for Metabolism and Tumorigenesis. Molecular Cell, 2016, 61, 187-198.	9.7	62

#	Article	IF	CITATIONS
127	Downregulation of hepatic betaine:homocysteine methyltransferase (BHMT) expression in taurine-deficient mice is reversed by taurine supplementation in vivo. Amino Acids, 2016, 48, 665-676.	2.7	15
128	Metabolic Plasticity of Metastatic Breast Cancer Cells: Adaptation to Changes in the Microenvironment. Neoplasia, 2015, 17, 671-684.	5.3	115
129	Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Reports, 2015, 16, 1145-1163.	4.5	232
130	The rate of glycolysisÂquantitatively mediates specific histone acetylation sites. Cancer & Metabolism, 2015, 3, 10.	5.0	121
131	Organization of Enzyme Concentration across the Metabolic Network in Cancer Cells. PLoS ONE, 2015, 10, e0117131.	2.5	35
132	Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. Journal of Clinical Investigation, 2015, 125, 194-207.	8.2	562
133	High-Resolution Metabolomics with Acyl-CoA Profiling Reveals Widespread Remodeling in Response to Diet*. Molecular and Cellular Proteomics, 2015, 14, 1489-1500.	3.8	95
134	A robust and efficient method for estimating enzyme complex abundance and metabolic flux from expression data. Computational Biology and Chemistry, 2015, 59, 98-112.	2.3	22
135	Extraction parameters for metabolomics from cultured cells. Analytical Biochemistry, 2015, 475, 22-28.	2.4	71
136	A roadmap for interpreting 13 C metabolite labeling patterns from cells. Current Opinion in Biotechnology, 2015, 34, 189-201.	6.6	513
137	Context-dependent utilization of serine in cancer. Molecular and Cellular Oncology, 2015, 2, e996418.	0.7	5
138	Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2056-2065.	3.8	75
139	Histone Methylation Dynamics and Gene Regulation Occur through the Sensing of One-Carbon Metabolism. Cell Metabolism, 2015, 22, 861-873.	16.2	481
140	Dysregulated metabolism contributes to oncogenesis. Seminars in Cancer Biology, 2015, 35, S129-S150.	9.6	225
141	Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. Cell, 2015, 162, 1217-1228.	28.9	1,044
142	Proteomic and Biochemical Studies of Lysine Malonylation Suggest Its Malonic Aciduria-associated Regulatory Role in Mitochondrial Function and Fatty Acid Oxidation. Molecular and Cellular Proteomics, 2015, 14, 3056-3071.	3.8	143
143	Designing a broad-spectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology, 2015, 35, S276-S304.	9.6	220
144	Gain of Glucose-Independent Growth upon Metastasis of Breast Cancer Cells to the Brain. Cancer Research, 2015, 75, 554-565.	0.9	133

#	Article	IF	CITATIONS
145	Epigenetics and cancer metabolism. Cancer Letters, 2015, 356, 309-314.	7.2	90
146	Abstract POSTER-TECH-1123: Advancing metformin as therapeutic for ovarian cancer: metabolomic profiling of mouse ovarian tumors identifies metformin-induced global metabolic changes. , 2015, , .		0
147	Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. ELife, 2014, 3, .	6.0	222
148	Characterization of the Usage of the Serine Metabolic Network in Human Cancer. Cell Reports, 2014, 9, 1507-1519.	6.4	136
149	Estimating Relative Changes of Metabolic Fluxes. PLoS Computational Biology, 2014, 10, e1003958.	3.2	12
150	A metabolic signature of colon cancer initiating cells. , 2014, 2014, 4759-62.		29
151	A Strategy for Sensitive, Large Scale Quantitative Metabolomics. Journal of Visualized Experiments, 2014, , .	0.3	29
152	Autophagy-Dependent Metabolic Reprogramming Sensitizes TSC2-Deficient Cells to the Antimetabolite 6-Aminonicotinamide. Molecular Cancer Research, 2014, 12, 48-57.	3.4	52
153	Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E582-91.	7.1	148
154	Glucose transporter 1-mediated glucose uptake is limiting for B-cell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis. Cell Death and Disease, 2014, 5, e1470-e1470.	6.3	59
155	Development and Quantitative Evaluation of a High-Resolution Metabolomics Technology. Analytical Chemistry, 2014, 86, 2175-2184.	6.5	164
156	Heterogeneity of glycolysis in cancers and therapeutic opportunities. Biochemical Pharmacology, 2014, 92, 12-21.	4.4	44
157	A Fundamental Trade-off in Covalent Switching and Its Circumvention by Enzyme Bifunctionality in Glucose Homeostasis. Journal of Biological Chemistry, 2014, 289, 13010-13025.	3.4	33
158	Computational approaches for understanding energy metabolism. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 733-750.	6.6	12
159	Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function. Nature Structural and Molecular Biology, 2013, 20, 46-52.	8.2	80
160	Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nature Biotechnology, 2013, 31, 522-529.	17.5	381
161	Serine, glycine and one-carbon units: cancer metabolism in full circle. Nature Reviews Cancer, 2013, 13, 572-583.	28.4	1,221
162	Influence of Threonine Metabolism on <i>S</i> -Adenosylmethionine and Histone Methylation. Science, 2013, 339, 222-226.	12.6	555

#	Article	IF	CITATIONS
163	Interactions between epigenetics and metabolism in cancers. Frontiers in Oncology, 2012, 2, 163.	2.8	67
164	Metabolomics of Human Cerebrospinal Fluid Identifies Signatures of Malignant Glioma. Molecular and Cellular Proteomics, 2012, 11, M111.014688.	3.8	89
165	Metabolic rewiring drives resistance to targeted cancer therapy. Molecular Systems Biology, 2012, 8, 597.	7.2	23
166	Maximizing the Efficacy of Angiogenesis Inhibitors. Journal of Clinical Oncology, 2012, 30, 337-338.	1.6	22
167	Amplification of phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. BMC Proceedings, 2012, 6, .	1.6	2
168	The consequences of enhanced cell-autonomous glucose metabolism. Trends in Endocrinology and Metabolism, 2012, 23, 545-551.	7.1	17
169	Oncogenic Kras Maintains Pancreatic Tumors through Regulation of Anabolic Glucose Metabolism. Cell, 2012, 149, 656-670.	28.9	1,587
170	Cancer Cell Metabolism. , 2012, , 245-261.		0
171	Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses. Science, 2011, 334, 1278-1283.	12.6	984
172	Human pluripotent stem cells decouple respiration from energy production. EMBO Journal, 2011, 30, 4851-4852.	7.8	36
173	Metabolic Regulation of Protein N-Alpha-Acetylation by Bcl-xL Promotes Cell Survival. Cell, 2011, 146, 607-620.	28.9	185
174	Metabolic Flux and the Regulation of Mammalian Cell Growth. Cell Metabolism, 2011, 14, 443-451.	16.2	371
175	Metabolic Pathway Alterations that Support Cell Proliferation. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 325-334.	1.1	252
176	mTOR Drives Its Own Activation via SCFβTrCP-Dependent Degradation of the mTOR Inhibitor DEPTOR. Molecular Cell, 2011, 44, 290-303.	9.7	212
177	<i>PHGDH</i> amplification and altered glucose metabolism in human melanoma. Pigment Cell and Melanoma Research, 2011, 24, 1112-1115.	3.3	114
178	Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genetics, 2011, 43, 869-874.	21.4	945
179	Genetic selection for enhanced serine metabolism in cancer development. Cell Cycle, 2011, 10, 3812-3813.	2.6	32
180	Ubiquitination of K-Ras Enhances Activation and Facilitates Binding to Select Downstream Effectors. Science Signaling, 2011, 4, ra13.	3.6	152

#	Article	IF	CITATIONS
181	IL-6 and Ovarian Cancer—Letter. Clinical Cancer Research, 2011, 17, 7837-7837.	7.0	2
182	Altered metabolism in cancer. BMC Biology, 2010, 8, 88.	3.8	144
183	Rewiring of glycolysis in cancer cell metabolism. Cell Cycle, 2010, 9, 4253-4253.	2.6	29
184	Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells. Science, 2010, 329, 1492-1499.	12.6	586
185	Extensive phosphorylation with overlapping specificity by <i>Mycobacterium tuberculosis</i> serine/threonine protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7521-7526.	7.1	245
186	Maximum Entropy Reconstructions of Dynamic Signaling Networks from Quantitative Proteomics Data. PLoS ONE, 2009, 4, e6522.	2.5	31
187	Cancer's insatiable appetite. Nature Biotechnology, 2009, 27, 916-917.	17.5	44
188	Signatures of Protein-DNA Recognition in Free DNA Binding Sites. Journal of Molecular Biology, 2009, 386, 1054-1065.	4.2	40
189	Signal duration and the time scale dependence of signal integration in biochemical pathways. BMC Systems Biology, 2008, 2, 108.	3.0	15
190	Regulation of Signal Duration and the Statistical Dynamics of Kinase Activation by Scaffold Proteins. PLoS Computational Biology, 2008, 4, e1000099.	3.2	19
191	Allovalency revisited: An analysis of multisite phosphorylation and substrate rebinding. Journal of Chemical Physics, 2008, 128, 115106.	3.0	14
192	Three-state kinetic mechanism for scaffold-mediated signal transduction. Physical Review E, 2008, 78, 051921.	2.1	2
193	Importance of signal duration and the time scale dependence of signal integration in biochemical networks. FASEB Journal, 2008, 22, 616.2.	0.5	0
194	Scaffold proteins confer diverse regulatory properties to protein kinase cascades. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13307-13312.	7.1	67
195	The Stimulatory Potency of T Cell Antigens Is Influenced by the Formation of the Immunological Synapse. Immunity, 2007, 26, 345-355.	14.3	83
196	Computational Investigations into the Origins of Short-Term Biochemical Memory in T cell Activation. PLoS ONE, 2007, 2, e627.	2.5	9
197	Scaffold Proteins Confer Diverse Regulatory Properties to Protein Kinase Cascades. FASEB Journal, 2007, 21, A264.	0.5	0
198	De Novo Acetate Production is Coupled to Central Carbon Metabolism in Mammals. SSRN Electronic Journal, 0, , .	0.4	0