Dajana Vuckovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6111322/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nondestructive Sampling of Living Systems Using <i>in Vivo</i> Solid-Phase Microextraction. Chemical Reviews, 2011, 111, 2784-2814.	23.0	399
2	Current trends and challenges in sample preparation for global metabolomics using liquid chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2012, 403, 1523-1548.	1.9	398
3	Recent developments in solid-phase microextraction. Analytical and Bioanalytical Chemistry, 2009, 393, 781-795.	1.9	339
4	Amino Acid Starvation Induced by Invasive Bacterial Pathogens Triggers an Innate Host Defense Program. Cell Host and Microbe, 2012, 11, 563-575.	5.1	331
5	Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950–Metabolites in Frozen Human Plasma. Journal of Lipid Research, 2017, 58, 2275-2288.	2.0	312
6	Solid-phase microextraction in bioanalysis: New devices and directions. Journal of Chromatography A, 2010, 1217, 4041-4060.	1.8	182
7	SPME – Quo vadis?. Analytica Chimica Acta, 2012, 750, 132-151.	2.6	163
8	Systematic Evaluation of Solid-Phase Microextraction Coatings for Untargeted Metabolomic Profiling of Biological Fluids by Liquid Chromatographyâ^'Mass Spectrometry. Analytical Chemistry, 2011, 83, 1944-1954.	3.2	146
9	In Vivo Solidâ€ P hase Microextraction: Capturing the Elusive Portion of Metabolome. Angewandte Chemie - International Edition, 2011, 50, 5344-5348.	7.2	128
10	In Vivo Solidâ€Phase Microextraction in Metabolomics: Opportunities for the Direct Investigation of Biological Systems. Angewandte Chemie - International Edition, 2011, 50, 5618-5628.	7.2	126
11	Automation of Solid-Phase Microextraction in High-Throughput Format and Applications to Drug Analysis. Analytical Chemistry, 2008, 80, 6870-6880.	3.2	121
12	Systematic Assessment of Seven Solvent and Solid-Phase Extraction Methods for Metabolomics Analysis of Human Plasma by LC-MS. Scientific Reports, 2016, 6, 38885.	1.6	95
13	In vitro evaluation of new biocompatible coatings for solid-phase microextraction: Implications for drug analysis and in vivo sampling applications. Analytica Chimica Acta, 2009, 638, 175-185.	2.6	93
14	Automated solid-phase microextraction and thin-film microextraction for high-throughput analysis of biological fluids and ligand–receptor binding studies. Nature Protocols, 2010, 5, 140-161.	5.5	91
15	Investigation of the Effect of the Extraction Phase Geometry on the Performance of Automated Solid-Phase Microextraction. Analytical Chemistry, 2009, 81, 4226-4232.	3.2	87
16	Membrane proteomics by high performance liquid chromatography–tandem mass spectrometry: Analytical approaches and challenges. Proteomics, 2013, 13, 404-423.	1.3	87
17	Automated high-throughput method using solid-phase microextraction–liquid chromatography–tandem mass spectrometry for the determination of ochratoxin A in human urine. Journal of Chromatography A, 2008, 1201, 215-221.	1.8	83
18	In vivo solid-phase microextraction for single rodent pharmacokinetics studies of carbamazepine and carbamazepine-10,11-epoxide in mice. Journal of Chromatography A, 2011, 1218, 3367-3375.	1.8	72

DAJANA VUCKOVIC

#	Article	IF	CITATIONS
19	In vivo solid-phase microextraction for monitoring intravenous concentrations of drugs and metabolites. Nature Protocols, 2011, 6, 896-924.	5.5	68
20	Liquid chromatography – high resolution mass spectrometry method for monitoring of 17 mycotoxins in human plasma for exposure studies. Journal of Chromatography A, 2018, 1548, 51-63.	1.8	56
21	Inâ€Vivo Solidâ€Phase Microextraction for Sampling of Oxylipins in Brain of Awake, Moving Rats. Angewandte Chemie - International Edition, 2020, 59, 2392-2398.	7.2	56
22	Dissemination and analysis of the quality assurance (QA) and quality control (QC) practices of LC–MS based untargeted metabolomics practitioners. Metabolomics, 2020, 16, 113.	1.4	56
23	High-throughput solid-phase microextraction in multi-well-plate format. TrAC - Trends in Analytical Chemistry, 2013, 45, 136-153.	5.8	55
24	Direct monitoring of ochratoxin A in cheese with solid-phase microextraction coupled to liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2009, 1216, 7505-7509.	1.8	51
25	Target Identification by Chromatographic Co-elution: Monitoring of Drug-Protein Interactions without Immobilization or Chemical Derivatization. Molecular and Cellular Proteomics, 2012, 11, M111.016642-1-M111.016642-14.	2.5	43
26	Determination of tranexamic acid concentration by solid phase microextraction and liquid chromatography–tandem mass spectrometry: First step to in vivo analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3781-3787.	1.2	40
27	Improving metabolome coverage and data quality: advancing metabolomics and lipidomics for biomarker discovery. Chemical Communications, 2018, 54, 6728-6749.	2.2	38
28	Automated study of ligand–receptor binding using solid-phase microextraction. Journal of Pharmaceutical and Biomedical Analysis, 2009, 50, 550-555.	1.4	37
29	Improving negative liquid chromatography/electrospray ionization mass spectrometry lipidomic analysis of human plasma using acetic acid as a mobileâ€phase additive. Rapid Communications in Mass Spectrometry, 2018, 32, 201-211.	0.7	33
30	Comparison and validation of calibration methods for in vivo SPME determinations using an artificial vein system. Analytica Chimica Acta, 2010, 665, 160-166.	2.6	28
31	Therapeutic Monitoring of Tranexamic Acid Concentration: High-Throughput Analysis With Solid-Phase Microextraction. Therapeutic Drug Monitoring, 2012, 34, 31-37.	1.0	28
32	Systems analysis reveals down-regulation of a network of pro-survival miRNAs drives the apoptotic response in dilated cardiomyopathy. Molecular BioSystems, 2015, 11, 239-251.	2.9	23
33	Semi-automated in vivo solid-phase microextraction sampling and the diffusion-based interface calibration model to determine the pharmacokinetics of methoxyfenoterol and fenoterol in rats. Analytica Chimica Acta, 2012, 742, 37-44.	2.6	19
34	Comparison of N-ethyl maleimide and N-(1-phenylethyl) maleimide for derivatization of biological thiols using liquid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 2020, 412, 1639-1652.	1.9	19
35	Assessment of solid phase microextraction as a sample preparation tool for untargeted analysis of brain tissue using liquid chromatography-mass spectrometry. Journal of Chromatography A, 2021, 1638, 461862.	1.8	18
36	Characterization of Phase I and Glucuronide Phase II Metabolites of 17 Mycotoxins Using Liquid Chromatography—High-Resolution Mass Spectrometry. Toxins, 2019, 11, 433.	1.5	17

DAJANA VUCKOVIC

#	Article	IF	CITATIONS
37	Comparison of solid phase microextraction versus spectroscopic techniques for binding studies of carbamazepine. Journal of Pharmaceutical and Biomedical Analysis, 2012, 66, 91-99.	1.4	16
38	Imaging TOF-SIMS analysis of oligonucleotide microarrays. Analyst, The, 2003, 128, 126-129.	1.7	15
39	Comparison of underivatized silica and zwitterionic sulfobetaine hydrophilic interaction liquid chromatography stationary phases for global metabolomics of human plasma. Journal of Chromatography A, 2019, 1608, 460419.	1.8	15
40	Solid-Phase Microextraction Method Development. , 2012, , 201-249.		14
41	Pharmacokinetics and Metabolism of Selective Oxoeicosanoid (OXE) Receptor Antagonists and Their Effects on 5-Oxo-6,8,11,14-eicosatetraenoic Acid (5-Oxo-ETE)-Induced Granulocyte Activation in Monkeys. Journal of Medicinal Chemistry, 2016, 59, 10127-10146.	2.9	14
42	In vivosolid-phase microextraction sampling: a promising future. Bioanalysis, 2011, 3, 1305-1308.	0.6	10
43	Novel highly potent OXE receptor antagonists with prolonged plasma lifetimes that are converted to active metabolites in vivo in monkeys. British Journal of Pharmacology, 2020, 177, 388-401.	2.7	10
44	Production of aroma and flavorâ€rich fusel alcohols by cheese whey fermentation using the Kluyveromyces marxianus and Debaryomyces hansenii yeasts in monoculture and coâ€culture modes. Journal of Chemical Technology and Biotechnology, 2021, 96, 2354.	1.6	10
45	Sample Preparation in Global Metabolomics of Biological FluidsÂandÂTissues. , 2013, , 51-75.		9
46	Solid-Phase Microextraction. , 2012, , 419-460.		8
47	In vivo α-hydroxylation of a 2-alkylindole antagonist of the OXE receptor for the eosinophil chemoattractant 5-oxo-6,8,11,14-eicosatetraenoic acid in monkeys. Biochemical Pharmacology, 2017, 138, 107-118.	2.0	8
48	Novel Highly Potent and Metabolically Resistant Oxoeicosanoid (OXE) Receptor Antagonists That Block the Actions of the Granulocyte Chemoattractant 5-Oxo-6,8,11,14-Eicosatetraenoic Acid (5-oxo-ETE). Journal of Medicinal Chemistry, 2018, 61, 5934-5948.	2.9	7
49	Metabolism and pharmacokinetics of a potent N-acylindole antagonist of the OXE receptor for the eosinophil chemoattractant 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) in rats and monkeys. European Journal of Pharmaceutical Sciences, 2018, 115, 88-99.	1.9	6
50	Sample preparation in global metabolomics of biological fluids and tissues. , 2020, , 53-83.		5
51	In Vivo Sampling with Solid-Phase Microextraction. , 2012, , 399-453.		4
52	Solid-Phase Microextraction Protocols. , 2012, , 455-478.		3
53	Automated SPME Systems. , 2012, , 135-165.		3
54	Inâ€Vivo Solidâ€Phase Microextraction for Sampling of Oxylipins in Brain of Awake, Moving Rats. Angewandte Chemie, 2020, 132, 2413-2419.	1.6	2

#	Article	IF	CITATIONS
55	Metabolism of anti-inflammatory OXE (oxoeicosanoid) receptor antagonists by nonhuman primates. European Journal of Pharmaceutical Sciences, 2022, 172, 106144.	1.9	1
56	Solid-Phase Microextraction in Binding Studies. , 2017, , 287-308.		0
57	Bioanalytical techniques in lipidomics. Bioanalysis, 2018, 10, 273-274.	0.6	0