List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6111108/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics, 2001, 90, 5048-5051.                                                                                   | 2.5  | 3,189     |
| 2  | Highly Phosphorescent Bis-Cyclometalated Iridium Complexes:  Synthesis, Photophysical<br>Characterization, and Use in Organic Light Emitting Diodes. Journal of the American Chemical Society,<br>2001, 123, 4304-4312. | 13.7 | 2,639     |
| 3  | Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature, 2006, 440, 908-912.                                                                                              | 27.8 | 2,178     |
| 4  | Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes. Inorganic Chemistry, 2001, 40, 1704-1711.                                                                                            | 4.0  | 1,191     |
| 5  | Synthesis and Characterization of Facial and Meridional Tris-cyclometalated Iridium(III) Complexes.<br>Journal of the American Chemical Society, 2003, 125, 7377-7387.                                                  | 13.7 | 1,191     |
| 6  | Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for<br>Organic Photovoltaics. ACS Nano, 2010, 4, 2865-2873.                                                                    | 14.6 | 1,148     |
| 7  | Synthesis and Characterization of Phosphorescent Cyclometalated Platinum Complexes. Inorganic<br>Chemistry, 2002, 41, 3055-3066.                                                                                        | 4.0  | 1,052     |
| 8  | Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Applied Physics Letters, 2001, 79, 2082-2084.                                          | 3.3  | 1,029     |
| 9  | High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials. Applied Physics Letters, 2000, 77, 904-906.                                        | 3.3  | 1,023     |
| 10 | Introduction:Â Organic Electronics and Optoelectronics. Chemical Reviews, 2007, 107, 923-925.                                                                                                                           | 47.7 | 708       |
| 11 | Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency.<br>Nature Materials, 2016, 15, 92-98.                                                                                  | 27.5 | 696       |
| 12 | High-efficiency red electrophosphorescence devices. Applied Physics Letters, 2001, 78, 1622-1624.                                                                                                                       | 3.3  | 682       |
| 13 | Synthetic Control of Excited-State Properties in Cyclometalated Ir(III) Complexes Using Ancillary<br>Ligands. Inorganic Chemistry, 2005, 44, 1713-1727.                                                                 | 4.0  | 663       |
| 14 | Hydroxylated Quantum Dots as Luminescent Probes for in Situ Hybridization. Journal of the American<br>Chemical Society, 2001, 123, 4103-4104.                                                                           | 13.7 | 659       |
| 15 | Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl orN-Heterocyclic Carbene Ligands. Inorganic Chemistry, 2005, 44, 7992-8003.                                                       | 4.0  | 629       |
| 16 | Three-Color, Tunable, Organic Light-Emitting Devices. Science, 1997, 276, 2009-2011.                                                                                                                                    | 12.6 | 571       |
| 17 | Cationic Bis-cyclometalated Iridium(III) Diimine Complexes and Their Use in Efficient Blue, Green, and<br>Red Electroluminescent Devices. Inorganic Chemistry, 2005, 44, 8723-8732.                                     | 4.0  | 564       |
| 18 | Temperature Dependence of Blue Phosphorescent Cyclometalated Ir(III) Complexes. Journal of the American Chemical Society, 2009, 131, 9813-9822.                                                                         | 13.7 | 558       |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Molecular and Morphological Influences on the Open Circuit Voltages of Organic Photovoltaic<br>Devices. Journal of the American Chemical Society, 2009, 131, 9281-9286.                                                                                                                                                                                                                  | 13.7 | 491       |
| 20 | High efficiency single dopant white electrophosphorescent light emitting diodesElectronic<br>supplementary information (ESI) available: emission spectra as a function of doping concentration for<br>3 in CBP, as well as the absorption and emission spectra of Irppz, CBP and mCP. See<br>http://www.rsc.org/suppdata/nj/b2/b204301g/. New Journal of Chemistry, 2002, 26, 1171-1178. | 2.8  | 486       |
| 21 | Ultrahigh Energy Gap Hosts in Deep Blue Organic Electrophosphorescent Devices. Chemistry of<br>Materials, 2004, 16, 4743-4747.                                                                                                                                                                                                                                                           | 6.7  | 473       |
| 22 | Enhanced Open-Circuit Voltage in Subphthalocyanine/C60 Organic Photovoltaic Cells. Journal of the<br>American Chemical Society, 2006, 128, 8108-8109.                                                                                                                                                                                                                                    | 13.7 | 454       |
| 23 | Eliminating nonradiative decay in Cu(I) emitters: >99% quantum efficiency and microsecond lifetime.<br>Science, 2019, 363, 601-606.                                                                                                                                                                                                                                                      | 12.6 | 450       |
| 24 | From Molecules to Materials: Current Trends and Future Directions. Advanced Materials, 1998, 10, 1297-1336.                                                                                                                                                                                                                                                                              | 21.0 | 429       |
| 25 | Synthesis and structure of (cis)-[1-ferrocenyl-2-(4-nitrophenyl)ethylene], an organotransition metal compound with a large second-order optical nonlinearity. Nature, 1987, 330, 360-362.                                                                                                                                                                                                | 27.8 | 413       |
| 26 | Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Organic Electronics, 2009, 10, 515-520.                                                                                                                                                                                                                                             | 2.6  | 390       |
| 27 | Complementary Detection of Prostate-Specific Antigen Using In2O3 Nanowires and Carbon Nanotubes.<br>Journal of the American Chemical Society, 2005, 127, 12484-12485.                                                                                                                                                                                                                    | 13.7 | 376       |
| 28 | Phosphorescence versus Thermally Activated Delayed Fluorescence. Controlling Singlet–Triplet<br>Splitting in Brightly Emitting and Sublimable Cu(I) Compounds. Journal of the American Chemical<br>Society, 2014, 136, 16032-16038.                                                                                                                                                      | 13.7 | 372       |
| 29 | Asymmetric Triaryldiamines as Thermally Stable Hole Transporting Layers for Organic Light-Emitting<br>Devices. Chemistry of Materials, 1998, 10, 2235-2250.                                                                                                                                                                                                                              | 6.7  | 351       |
| 30 | New charge-carrier blocking materials for high efficiency OLEDs. Organic Electronics, 2003, 4, 77-87.                                                                                                                                                                                                                                                                                    | 2.6  | 335       |
| 31 | Solution-Phase Synthesis of SnSe Nanocrystals for Use in Solar Cells. Journal of the American<br>Chemical Society, 2010, 132, 4060-4061.                                                                                                                                                                                                                                                 | 13.7 | 318       |
| 32 | Synthetic Control of Pt···Pt Separation and Photophysics of Binuclear Platinum Complexes. Journal of<br>the American Chemical Society, 2005, 127, 28-29.                                                                                                                                                                                                                                 | 13.7 | 304       |
| 33 | Efficient, Saturated Red Organic Light Emitting Devices Based on Phosphorescent Platinum(II)<br>Porphyrins. Chemistry of Materials, 1999, 11, 3709-3713.                                                                                                                                                                                                                                 | 6.7  | 303       |
| 34 | Stable photoinduced charge separation in layered viologen compounds. Nature, 1992, 358, 656-658.                                                                                                                                                                                                                                                                                         | 27.8 | 283       |
| 35 | Platinum-Functionalized Random Copolymers for Use in Solution-Processible, Efficient, Near-White<br>Organic Light-Emitting Diodes. Journal of the American Chemical Society, 2004, 126, 15388-15389.                                                                                                                                                                                     | 13.7 | 277       |
| 36 | Efficient Singlet Fission Discovered in a Disordered Acene Film. Journal of the American Chemical<br>Society, 2012, 134, 6388-6400.                                                                                                                                                                                                                                                      | 13.7 | 275       |

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Hole Transporting Materials with High Glass Transition Temperatures for Use in Organic<br>Light-Emitting Devices. Advanced Materials, 1998, 10, 1108-1112.                                                   | 21.0 | 262       |
| 38 | Use of Layered Metal Phosphonates for the Design and Construction of Molecular Materials.<br>Chemistry of Materials, 1994, 6, 1168-1175.                                                                     | 6.7  | 260       |
| 39 | Solventâ€Annealed Crystalline Squaraine: PC <sub>70</sub> BM (1:6) Solar Cells. Advanced Energy<br>Materials, 2011, 1, 184-187.                                                                              | 19.5 | 254       |
| 40 | High operational stability of electrophosphorescent devices. Applied Physics Letters, 2002, 81, 162-164.                                                                                                     | 3.3  | 251       |
| 41 | Phosphorescence Quenching by Conjugated Polymers. Journal of the American Chemical Society, 2003, 125, 7796-7797.                                                                                            | 13.7 | 251       |
| 42 | 1,8-Naphthalimides in Phosphorescent Organic LEDs:Â The Interplay between Dopant, Exciplex, and Host<br>Emission. Journal of the American Chemical Society, 2002, 124, 9945-9954.                            | 13.7 | 248       |
| 43 | Singlet Fission in a Covalently Linked Cofacial Alkynyltetracene Dimer. Journal of the American<br>Chemical Society, 2016, 138, 617-627.                                                                     | 13.7 | 248       |
| 44 | Highly Efficient, Near-Infrared Electrophosphorescence from a Pt–Metalloporphyrin Complex.<br>Angewandte Chemie - International Edition, 2007, 46, 1109-1112.                                                | 13.8 | 246       |
| 45 | A Codeposition Route to Culâ^'Pyridine Coordination Complexes for Organic Light-Emitting Diodes.<br>Journal of the American Chemical Society, 2011, 133, 3700-3703.                                          | 13.7 | 244       |
| 46 | Bis-cyclometalated Ir(III) Complexes as Efficient Singlet Oxygen Sensitizers. Journal of the American<br>Chemical Society, 2002, 124, 14828-14829.                                                           | 13.7 | 241       |
| 47 | Colloidal Metal Deposition onto Functionalized Polystyrene Microspheres. Chemistry of Materials,<br>1999, 11, 2389-2399.                                                                                     | 6.7  | 234       |
| 48 | Selective Functionalization of In2O3Nanowire Mat Devices for Biosensing Applications. Journal of the American Chemical Society, 2005, 127, 6922-6923.                                                        | 13.7 | 232       |
| 49 | Dendrimer-Containing Light-Emitting Diodes:Â Toward Site-Isolation of Chromophores. Journal of the<br>American Chemical Society, 2000, 122, 12385-12386.                                                     | 13.7 | 224       |
| 50 | Highly Efficient Photo- and Electroluminescence from Two-Coordinate Cu(I) Complexes Featuring<br>Nonconventional N-Heterocyclic Carbenes. Journal of the American Chemical Society, 2019, 141,<br>3576-3588. | 13.7 | 223       |
| 51 | High-performance polymer light-emitting diodes doped with a red phosphorescent iridium complex.<br>Applied Physics Letters, 2002, 80, 2308-2310.                                                             | 3.3  | 220       |
| 52 | Understanding and predicting the orientation ofÂheteroleptic phosphors in organic<br>light-emittingAmaterials. Nature Materials, 2016, 15, 85-91.                                                            | 27.5 | 217       |
| 53 | Platinum Binuclear Complexes as Phosphorescent Dopants for Monochromatic and White Organic<br>Light-Emitting Diodes. Advanced Functional Materials, 2006, 16, 2438-2446.                                     | 14.9 | 210       |
| 54 | Excimer and electron transfer quenching studies of a cyclometalated platinum complex.<br>Coordination Chemistry Reviews, 2005, 249, 1501-1510.                                                               | 18.8 | 209       |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes.<br>Nature Communications, 2017, 8, 15566.                                                                                              | 12.8 | 209       |
| 56 | A round robin study of flexible large-area roll-to-roll processed polymer solar cell modules. Solar<br>Energy Materials and Solar Cells, 2009, 93, 1968-1977.                                                                         | 6.2  | 205       |
| 57 | Label-Free, Electrical Detection of the SARS Virus N-Protein with Nanowire Biosensors Utilizing Antibody Mimics as Capture Probes. ACS Nano, 2009, 3, 1219-1224.                                                                      | 14.6 | 203       |
| 58 | High-efficiency yellow double-doped organic light-emitting devices based on phosphor-sensitized fluorescence. Applied Physics Letters, 2001, 79, 1045-1047.                                                                           | 3.3  | 199       |
| 59 | Simultaneous Light Emission from a Mixture of Dendrimer Encapsulated Chromophores:Â A Model for<br>Single-Layer Multichromophoric Organic Light-Emitting Diodes. Journal of the American Chemical<br>Society, 2003, 125, 13165-13172. | 13.7 | 194       |
| 60 | "Quick-Silver―from a Systematic Study of Highly Luminescent, Two-Coordinate, d <sup>10</sup><br>Coinage Metal Complexes. Journal of the American Chemical Society, 2019, 141, 8616-8626.                                              | 13.7 | 187       |
| 61 | Improving the performance of conjugated polymer-based devices by control of interchain interactions and polymer film morphology. Applied Physics Letters, 2000, 76, 2454-2456.                                                        | 3.3  | 181       |
| 62 | Cyclometalated iridium and platinum complexes as singlet oxygen photosensitizers: quantum yields, quenching rates and correlation with electronic structures. Dalton Transactions, 2007, , 3763.                                      | 3.3  | 180       |
| 63 | Cyclometalated Ir complexes in polymer organic light-emitting devices. Journal of Applied Physics, 2002, 92, 1570-1575.                                                                                                               | 2.5  | 174       |
| 64 | Molecularly doped polymer light emitting diodes utilizing phosphorescent Pt(II) and Ir(III) dopants.<br>Organic Electronics, 2001, 2, 53-62.                                                                                          | 2.6  | 162       |
| 65 | Emitter Orientation as a Key Parameter in Organic Light-Emitting Diodes. Physical Review Applied, 2017,<br>8, .                                                                                                                       | 3.8  | 158       |
| 66 | Synthesis and Applications of Palladium-Coated Poly(vinylpyridine) Nanospheres. Chemistry of<br>Materials, 2000, 12, 1985-1989.                                                                                                       | 6.7  | 156       |
| 67 | Solution-Processed Squaraine Bulk Heterojunction Photovoltaic Cells. ACS Nano, 2010, 4, 1927-1934.                                                                                                                                    | 14.6 | 156       |
| 68 | Synthesis and characterization of phosphorescent three-coordinate Cu(i)–NHC complexes. Chemical Communications, 2010, 46, 6696.                                                                                                       | 4.1  | 152       |
| 69 | Blue Light Emitting Ir(III) Compounds for OLEDs - New Insights into Ancillary Ligand Effects on the<br>Emitting Triplet State. Journal of Physical Chemistry A, 2009, 113, 5927-5932.                                                 | 2.5  | 150       |
| 70 | Singlet and Triplet Excitation Management in a Bichromophoric Near-Infrared-Phosphorescent<br>BODIPY-Benzoporphyrin Platinum Complex. Journal of the American Chemical Society, 2011, 133, 88-96.                                     | 13.7 | 147       |
| 71 | Photophysical Properties of Cyclometalated Pt(II) Complexes: Counterintuitive Blue Shift in Emission with an Expanded Ligand π System. Inorganic Chemistry, 2013, 52, 12403-12415.                                                    | 4.0  | 143       |
| 72 | Synthesis and characterization of cyclometalated Ir(III) complexes with pyrazolyl ancillary ligands.<br>Polyhedron, 2004, 23, 419-428.                                                                                                | 2.2  | 142       |

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Efficient Dipyrrin-Centered Phosphorescence at Room Temperature from Bis-Cyclometalated Iridium(III)<br>Dipyrrinato Complexes. Inorganic Chemistry, 2010, 49, 6077-6084.                                | 4.0  | 142       |
| 74 | Cu <sub>4</sub> I <sub>4</sub> Clusters Supported by P <sup>â^§</sup> N-type Ligands: New Structures with Tunable Emission Colors. Inorganic Chemistry, 2012, 51, 230-236.                              | 4.0  | 140       |
| 75 | Porphyrinâ€Tape/C <sub>60</sub> Organic Photodetectors with 6.5% External Quantum Efficiency in the<br>Near Infrared. Advanced Materials, 2010, 22, 2780-2783.                                          | 21.0 | 137       |
| 76 | Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads.<br>Chemical Communications, 2012, 48, 284-286.                                                       | 4.1  | 137       |
| 77 | Living Radical Polymerization of Bipolar Transport Materials for Highly Efficient Light Emitting<br>Diodes. Chemistry of Materials, 2006, 18, 386-395.                                                  | 6.7  | 135       |
| 78 | Study of Ion-Paired Iridium Complexes (Soft Salts) and Their Application in Organic Light Emitting<br>Diodes. Journal of the American Chemical Society, 2010, 132, 3133-3139.                           | 13.7 | 135       |
| 79 | Efficient, Ordered Bulk Heterojunction Nanocrystalline Solar Cells by Annealing of Ultrathin<br>Squaraine Thin Films. Nano Letters, 2010, 10, 3555-3559.                                                | 9.1  | 132       |
| 80 | Vibronic Structure in Room Temperature Photoluminescence of the Halide Perovskite<br>Cs <sub>3</sub> Bi <sub>2</sub> Br <sub>9</sub> . Inorganic Chemistry, 2017, 56, 42-45.                            | 4.0  | 129       |
| 81 | Linker-Dependent Singlet Fission in Tetracene Dimers. Journal of the American Chemical Society, 2018, 140, 10179-10190.                                                                                 | 13.7 | 129       |
| 82 | Efficient photoinduced charge separation in layered zirconium viologen phosphonate compounds.<br>Journal of the American Chemical Society, 1993, 115, 11767-11774.                                      | 13.7 | 122       |
| 83 | The molecular nature of photovoltage losses in organic solar cells. Chemical Communications, 2011, 47, 3702.                                                                                            | 4.1  | 122       |
| 84 | Control of emission colour with N-heterocyclic carbene (NHC) ligands in phosphorescent<br>three-coordinate Cu( <scp>i</scp> ) complexes. Chemical Communications, 2014, 50, 7176-7179.                  | 4.1  | 122       |
| 85 | The effects of copper phthalocyanine purity on organic solar cell performance. Organic Electronics, 2005, 6, 242-246.                                                                                   | 2.6  | 121       |
| 86 | New Thermally Cross-Linkable Polymer and Its Application as a Hole-Transporting Layer for Solution<br>Processed Multilayer Organic Light Emitting Diodes. Chemistry of Materials, 2007, 19, 4827-4832.  | 6.7  | 121       |
| 87 | Crystal Structure of a Porous Zirconium Phosphate/Phosphonate Compound and Photocatalytic<br>Hydrogen Production from Related Materials. Chemistry of Materials, 1996, 8, 2239-2246.                    | 6.7  | 119       |
| 88 | Matrix Effects on the Triplet State of the OLED Emitter Ir(4,6-dFppy) <sub>2</sub> (pic) (FIrpic):<br>Investigations by High-Resolution Optical Spectroscopy. Inorganic Chemistry, 2009, 48, 1928-1937. | 4.0  | 119       |
| 89 | A Calibration Method for Nanowire Biosensors to Suppress Device-to-Device Variation. ACS Nano, 2009, 3, 3969-3976.                                                                                      | 14.6 | 118       |
| 90 | Cyclometalated iridium(iii)-sensitized titanium dioxide solar cells. Photochemical and<br>Photobiological Sciences, 2006, 5, 871.                                                                       | 2.9  | 115       |

| #   | Article                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Independent Control of Bulk and Interfacial Morphologies of Small Molecular Weight Organic<br>Heterojunction Solar Cells. Nano Letters, 2012, 12, 4366-4371.                        | 9.1  | 114       |
| 92  | Thermally Stable Hole-Transporting Materials Based upon a Fluorene Core. Advanced Functional<br>Materials, 2002, 12, 245.                                                           | 14.9 | 113       |
| 93  | Effect of carbazole–oxadiazole excited-state complexes on the efficiency of dye-doped light-emitting diodes. Journal of Applied Physics, 2002, 91, 6717.                            | 2.5  | 113       |
| 94  | N,N-Di <i>aryl</i> anilinosquaraines and Their Application to Organic Photovoltaics. Chemistry of Materials, 2011, 23, 4789-4798.                                                   | 6.7  | 113       |
| 95  | Structural and Photophysical Studies of Phosphorescent Three-Coordinate Copper(I) Complexes<br>Supported by an N-Heterocyclic Carbene Ligand. Organometallics, 2012, 31, 7983-7993. | 2.3  | 113       |
| 96  | Separated Carbon Nanotube Macroelectronics for Active Matrix Organic Light-Emitting Diode<br>Displays. Nano Letters, 2011, 11, 4852-4858.                                           | 9.1  | 110       |
| 97  | Simple and High Efficiency Phosphorescence Organic Light-Emitting Diodes with Codeposited Copper(I)<br>Emitter. Chemistry of Materials, 2014, 26, 2368-2373.                        | 6.7  | 108       |
| 98  | The Evolution of Organometallic Complexes in Organic Light-Emitting Devices. MRS Bulletin, 2007, 32, 694-701.                                                                       | 3.5  | 107       |
| 99  | Data Storage Studies on Nanowire Transistors with Self-Assembled Porphyrin Molecules. Journal of<br>Physical Chemistry B, 2004, 108, 9646-9649.                                     | 2.6  | 105       |
| 100 | Symmetry-Breaking Charge Transfer of Visible Light Absorbing Systems: Zinc Dipyrrins. Journal of<br>Physical Chemistry C, 2014, 118, 21834-21845.                                   | 3.1  | 103       |
| 101 | Direct Production of Hydrogen Peroxide with Palladium Supported on Phosphate Viologen<br>Phosphonate Catalysts. Journal of Catalysis, 2000, 196, 366-374.                           | 6.2  | 102       |
| 102 | Direct observation of structural changes in organic light emitting devices during degradation.<br>Journal of Applied Physics, 2001, 90, 3242-3247.                                  | 2.5  | 102       |
| 103 | Functionalized Squaraine Donors for Nanocrystalline Organic Photovoltaics. ACS Nano, 2012, 6, 972-978.                                                                              | 14.6 | 102       |
| 104 | High efficiency organic photovoltaic cells based on a vapor deposited squaraine donor. Applied<br>Physics Letters, 2009, 94, .                                                      | 3.3  | 101       |
| 105 | Fabrication of Nanostructures by Hydroxylamine Seeding of Gold Nanoparticle Templates. Langmuir, 2001, 17, 1713-1718.                                                               | 3.5  | 98        |
| 106 | A Paradigm for Blue- or Red-Shifted Absorption of Small Molecules Depending on the Site of<br>Ĩ€-Extension. Journal of the American Chemical Society, 2010, 132, 16247-16255.       | 13.7 | 96        |
| 107 | Smallâ€Molecule Photovoltaics Based on Functionalized Squaraine Donor Blends. Advanced Materials,<br>2012, 24, 1956-1960.                                                           | 21.0 | 96        |
| 108 | Electroluminescent properties of self-assembled polymer thin films. Advanced Materials, 1995, 7,<br>395-398.                                                                        | 21.0 | 94        |

| #   | Article                                                                                                                                                                                                  | IF         | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 109 | Reâ€evaluating the Role of Sterics and Electronic Coupling in Determining the Openâ€Circuit Voltage of<br>Organic Solar Cells. Advanced Materials, 2013, 25, 6076-6082.                                  | 21.0       | 90        |
| 110 | Improving Photocatalysis for the Reduction of CO <sub>2</sub> through Non-covalent<br>Supramolecular Assembly. Journal of the American Chemical Society, 2019, 141, 14961-14965.                         | 13.7       | 89        |
| 111 | Triplet State Properties of the OLED Emitter Ir(btp)2(acac):Â Characterization by Site-Selective<br>Spectroscopy and Application of High Magnetic Fields. Inorganic Chemistry, 2007, 46, 5076-5083.      | 4.0        | 88        |
| 112 | High-Performance Single-Crystalline Arsenic-Doped Indium Oxide Nanowires for Transparent Thin-Film<br>Transistors and Active Matrix Organic Light-Emitting Diode Displays. ACS Nano, 2009, 3, 3383-3390. | 14.6       | 88        |
| 113 | Highly efficient electrophosphorescent polymer light-emitting devices. Organic Electronics, 2000, 1, 15-20.                                                                                              | 2.6        | 87        |
| 114 | Photophysics of Pt-porphyrin electrophosphorescent devices emitting in the near infrared. Applied Physics Letters, 2007, 90, 213503.                                                                     | 3.3        | 87        |
| 115 | Fused Pyrene–Diporphyrins: Shifting Nearâ€Infrared Absorption to 1.5â€Î¼m and Beyond. Angewandte Chem<br>- International Edition, 2010, 49, 5523-5526.                                                   | ie<br>13.8 | 87        |
| 116 | Photocurrent Generation in Multilayer Organicâ^'Inorganic Thin Films with Cascade Energy<br>Architectures. Journal of the American Chemical Society, 2002, 124, 4796-4803.                               | 13.7       | 85        |
| 117 | Arylamine-Based Squaraine Donors for Use in Organic Solar Cells. Nano Letters, 2011, 11, 4261-4264.                                                                                                      | 9.1        | 84        |
| 118 | Electrophosphorescence in organic light emitting diodes. Current Opinion in Solid State and Materials Science, 1999, 4, 369-372.                                                                         | 11.5       | 82        |
| 119 | Cascade Organic Solar Cells. Chemistry of Materials, 2011, 23, 4132-4140.                                                                                                                                | 6.7        | 82        |
| 120 | Symmetry-Breaking Charge Transfer in a Zinc Chlorodipyrrin Acceptor for High Open Circuit Voltage<br>Organic Photovoltaics. Journal of the American Chemical Society, 2015, 137, 5397-5405.              | 13.7       | 82        |
| 121 | Imaging and Manipulation of Gold Nanorods with an Atomic Force Microscope. Journal of Physical Chemistry B, 2002, 106, 231-234.                                                                          | 2.6        | 81        |
| 122 | Near-Infrared Phosphorescent Polymeric Nanomicelles: Efficient Optical Probes for Tumor Imaging and Detection. ACS Applied Materials & amp; Interfaces, 2009, 1, 1474-1481.                              | 8.0        | 81        |
| 123 | Statistical Copolymers with Side-Chain Hole and Electron Transport Groups for Single-Layer Electroluminescent Device Applications. Chemistry of Materials, 2000, 12, 2542-2549.                          | 6.7        | 80        |
| 124 | High-Efficiency BODIPY-Based Organic Photovoltaics. ACS Applied Materials & Interfaces, 2015, 7, 662-669.                                                                                                | 8.0        | 79        |
| 125 | A film bulk acoustic resonator in liquid environments. Journal of Micromechanics and Microengineering, 2005, 15, 1911-1916.                                                                              | 2.6        | 78        |
| 126 | Importance of Controlling Nanotube Density for Highly Sensitive and Reliable Biosensors Functional<br>in Physiological Conditions. ACS Nano, 2010, 4, 6914-6922.                                         | 14.6       | 78        |

| #   | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Rapid, Label-Free, Electrical Whole Blood Bioassay Based on Nanobiosensor Systems. ACS Nano, 2011, 5,<br>9883-9891.                                                                                                            | 14.6 | 74        |
| 128 | Thermally assisted delayed fluorescence (TADF): fluorescence delayed is fluorescence denied.<br>Materials Horizons, 2020, 7, 1210-1217.                                                                                        | 12.2 | 73        |
| 129 | Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons. Journal of Organic Chemistry, 2012, 77, 143-159.                                                                                                           | 3.2  | 72        |
| 130 | Phosphorescent 2-, 3- and 4-coordinate cyclic (alkyl)(amino)carbene (CAAC) Cu( <scp>i</scp> ) complexes. Chemical Communications, 2017, 53, 9008-9011.                                                                         | 4.1  | 72        |
| 131 | Enhancement of the Luminescent Efficiency in Carbene-Au <sup>(I)</sup> -Aryl Complexes by the<br>Restriction of Renner–Teller Distortion and Bond Rotation. Journal of the American Chemical<br>Society, 2020, 142, 6158-6172. | 13.7 | 72        |
| 132 | Organic photovoltaics incorporating electron conducting exciton blocking layers. Applied Physics<br>Letters, 2011, 98, 243307.                                                                                                 | 3.3  | 70        |
| 133 | Highly Sensitive and Quick Detection of Acute Myocardial Infarction Biomarkers Using<br>In <sub>2</sub> O <sub>3</sub> Nanoribbon Biosensors Fabricated Using Shadow Masks. ACS Nano,<br>2016, 10, 10117-10125.                | 14.6 | 69        |
| 134 | Growth and Characterization of Photoactive and Electroactive Zirconium Bisphosphonate Multilayer<br>Films. Chemistry of Materials, 1996, 8, 1490-1499.                                                                         | 6.7  | 68        |
| 135 | Prospects and applications for organic light-emitting devices. Current Opinion in Solid State and Materials Science, 1997, 2, 236-243.                                                                                         | 11.5 | 68        |
| 136 | Bipolar Copolymers as Host for Electroluminescent Devices:Â Effects of Molecular Structure on Film<br>Morphology and Device Performance. Macromolecules, 2007, 40, 8156-8161.                                                  | 4.8  | 68        |
| 137 | Fused Porphyrin–Single-Walled Carbon Nanotube Hybrids: Efficient Formation and Photophysical<br>Characterization. ACS Nano, 2013, 7, 3466-3475.                                                                                | 14.6 | 67        |
| 138 | Study of Energy Transfer and Triplet Exciton Diffusion in Holeâ€Transporting Host Materials. Advanced<br>Functional Materials, 2009, 19, 3157-3164.                                                                            | 14.9 | 66        |
| 139 | Synthesis and photochemical properties of porous zirconium viologen phosphonate compounds.<br>Chemistry of Materials, 1994, 6, 77-81.                                                                                          | 6.7  | 65        |
| 140 | Synthesis of Germanium Nanoclusters with Irreversibly Attached Functional Groups:  Acetals,<br>Alcohols, Esters, and Polymers. Chemistry of Materials, 2003, 15, 1682-1689.                                                    | 6.7  | 61        |
| 141 | Highly Scalable, Uniform, and Sensitive Biosensors Based on Top-Down Indium Oxide Nanoribbons and Electronic Enzyme-Linked Immunosorbent Assay. Nano Letters, 2015, 15, 1943-1951.                                             | 9.1  | 60        |
| 142 | Photocurrent generation in metal bisphosphonate multilayer thin films. Nature, 1996, 380, 610-612.                                                                                                                             | 27.8 | 59        |
| 143 | Control of Interface Order by Inverse Quasi-Epitaxial Growth of Squaraine/Fullerene Thin Film<br>Photovoltaics. ACS Nano, 2013, 7, 9268-9275.                                                                                  | 14.6 | 59        |
| 144 | Cyclometallated Iridium and Platinum Complexes with Noninnocent Ligands. Inorganic Chemistry, 2007, 46, 3865-3875.                                                                                                             | 4.0  | 57        |

| #   | Article                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Singlet–triplet quenching in high intensity fluorescent organic light emitting diodes. Chemical<br>Physics Letters, 2010, 495, 161-165.                                                     | 2.6  | 57        |
| 146 | A reversible thermoresponsive sealant for temporary closure of ocular trauma. Science Translational Medicine, 2017, 9, .                                                                    | 12.4 | 57        |
| 147 | The enhancement of intercalation reactions by ultrasound. Journal of the Chemical Society Chemical Communications, 1987, , 900.                                                             | 2.0  | 56        |
| 148 | Synthesis of Octasubstituted Cyclooctatetraenes and Their Use as Electron Transporters in Organic<br>Light Emitting Diodes. Journal of the American Chemical Society, 2000, 122, 7480-7486. | 13.7 | 55        |
| 149 | Structure of a Novel Layered Zirconium Diphosphonate Compound:<br>Zr2(O3PCH2CH2-viologen-CH2CH2PO3)F6.cntdot.2H2O. Chemistry of Materials, 1994, 6, 1845-1849.                              | 6.7  | 54        |
| 150 | Dependence of Phosphorescent Emitter Orientation on Deposition Technique in Doped Organic Films.<br>Chemistry of Materials, 2016, 28, 712-715.                                              | 6.7  | 54        |
| 151 | Forming oriented organic crystals from amorphous thin films on patterned substrates via solvent-vapor annealing. Organic Electronics, 2005, 6, 211-220.                                     | 2.6  | 52        |
| 152 | Phosphorescent Platinum Dyads with Cyclometalated Ligands: Synthesis, Characterization, and<br>Photophysical Studies. Journal of Physical Chemistry C, 2008, 112, 8022-8031.                | 3.1  | 52        |
| 153 | Anionic iridium complexes for solid state light-emitting electrochemical cells. Journal of Materials<br>Chemistry, 2012, 22, 9556.                                                          | 6.7  | 52        |
| 154 | Synthesis and characterization of phosphorescent two-coordinate copper( <scp>i</scp> ) complexes bearing diamidocarbene ligands. Dalton Transactions, 2017, 46, 745-752.                    | 3.3  | 52        |
| 155 | Symmetry-Breaking Charge Transfer in Boron Dipyridylmethene (DIPYR) Dimers. ACS Applied Energy<br>Materials, 2018, 1, 1083-1095.                                                            | 5.1  | 52        |
| 156 | Organic Photovoltaics Using Tetraphenylbenzoporphyrin Complexes as Donor Layers. Advanced<br>Materials, 2009, 21, 1517-1520.                                                                | 21.0 | 51        |
| 157 | Blue Emissive <i>fac</i> / <i>mer</i> â€ŀridium (III) NHC Carbene Complexes and their Application in OLEDs.<br>Advanced Optical Materials, 2021, 9, 2001994.                                | 7.3  | 51        |
| 158 | Ruthenium Catalyzed Synthesis of Cross-Conjugated Polymers and Related Hyperbranched Materials.<br>Copoly(arylene/1,1-vinylene)s. Macromolecules, 1998, 31, 2784-2788.                      | 4.8  | 50        |
| 159 | Molecular Engineering of Heterogeneous Catalysts: An Efficient Catalyst for the Production of<br>Hydrogen Peroxide. Journal of Catalysis, 1996, 161, 62-67.                                 | 6.2  | 49        |
| 160 | Use of additives in porphyrin-tape/C60 near-infrared photodetectors. Organic Electronics, 2011, 12, 869-873.                                                                                | 2.6  | 49        |
| 161 | Elucidating the interplay between dark current coupling and open circuit voltage in organic photovoltaics. Applied Physics Letters, 2011, 98, .                                             | 3.3  | 49        |
| 162 | Aqueous Colloidal Acene Nanoparticles: A New Platform for Studying Singlet Fission. Journal of<br>Physical Chemistry B, 2013, 117, 15519-15526.                                             | 2.6  | 47        |

| #   | Article                                                                                                                                                                                                                                                                                       | IF       | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 163 | Charge transport and exciton dissociation in organic solar cells consisting of dipolar donors mixed with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">C</mml:mi><mml:mn>70</mml:mn></mml:msub></mml:math> . Physical Review B, 2015, 92, . | 3.2      | 47        |
| 164 | Orange and red organic light-emitting devices using aluminum tris(5-hydroxyquinoxaline). Synthetic<br>Metals, 1997, 91, 217-221.                                                                                                                                                              | 3.9      | 46        |
| 165 | Symmetry breaking charge transfer as a means to study electron transfer with no driving force.<br>Faraday Discussions, 2019, 216, 379-394.                                                                                                                                                    | 3.2      | 46        |
| 166 | The Roles of Structural Order and Intermolecular Interactions in Determining Ionization Energies<br>and Chargeâ€Transfer State Energies in Organic Semiconductors. Advanced Energy Materials, 2016, 6,<br>1601211.                                                                            | 19.5     | 45        |
| 167 | Manipulating Triplet Yield through Control of Symmetry-Breaking Charge Transfer. Journal of<br>Physical Chemistry Letters, 2018, 9, 3264-3270.                                                                                                                                                | 4.6      | 44        |
| 168 | A Fullerene-Based Organic Exciton Blocking Layer with High Electron Conductivity. Nano Letters, 2013, 13, 3315-3320.                                                                                                                                                                          | 9.1      | 42        |
| 169 | Understanding molecular fragmentation in blue phosphorescent organic light-emitting devices.<br>Organic Electronics, 2019, 64, 15-21.                                                                                                                                                         | 2.6      | 42        |
| 170 | Reversible Bioadhesives Using Tannic Acid Primed Thermallyâ€Responsive Polymers. Advanced Functional<br>Materials, 2020, 30, 1907478.                                                                                                                                                         | 14.9     | 42        |
| 171 | Highly Efficient Deep Blue Luminescence of 2-Coordinate Coinage Metal Complexes Bearing Bulky NHC<br>Benzimidazolyl Carbene. Frontiers in Chemistry, 2020, 8, 401.                                                                                                                            | 3.6      | 42        |
| 172 | Second-order non-linear optical properties of diironalkenylidyne complexes; crystal structure of<br>{(η-C5H5)2Fe2(CO)2(μ-CO)(μ-(E)î—,Cî—,CHî—»CHî—,C6H4î—,(p)-NMe2)}+BF4â^. Polyhedron, 1992, 11, 1429                                                                                        | 9-12435. | 41        |
| 173 | Systematic Study of the Photoluminescent and Electroluminescent Properties of Pentacoordinate<br>Carboxylate and Chloro Bis(8-hydroxyquinaldine) Complexes of Gallium(III). The Journal of Physical<br>Chemistry, 1996, 100, 17766-17771.                                                     | 2.9      | 41        |
| 174 | Observation of Triplet Exciton Formation in a Platinum-Sensitized Organic Photovoltaic Device.<br>Journal of Physical Chemistry Letters, 2011, 2, 48-54.                                                                                                                                      | 4.6      | 41        |
| 175 | Second-order non-linear optical properties of Fe(SALEN) complexes. Polyhedron, 1996, 15, 2369-2376.                                                                                                                                                                                           | 2.2      | 40        |
| 176 | Organometallic Complexes as Hole-Transporting Materials in Organic Light-Emitting Diodes. Inorganic<br>Chemistry, 2004, 43, 1697-1707.                                                                                                                                                        | 4.0      | 40        |
| 177 | Impact of Molecular Orientation and Spontaneous Interfacial Mixing on the Performance of Organic<br>Solar Cells. Chemistry of Materials, 2015, 27, 5597-5604.                                                                                                                                 | 6.7      | 40        |
| 178 | Synthesis and Study of Zirconium Viologen Phosphonate Thin Films Containing Colloidal Platinum.<br>Journal of the American Chemical Society, 1994, 116, 765-766.                                                                                                                              | 13.7     | 37        |
| 179 | Properties of Fluorenyl Silanes in Organic Light Emitting Diodes. Chemistry of Materials, 2010, 22, 1724-1731.                                                                                                                                                                                | 6.7      | 37        |
| 180 | Phenanthro[9,10- <i>d</i> ]triazole and imidazole derivatives: high triplet energy host materials for blue phosphorescent organic light emitting devices. Materials Horizons, 2019, 6, 1179-1186.                                                                                             | 12.2     | 36        |

| #   | Article                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Anionic order and band gap engineering in vacancy ordered triple perovskites. Chemical Communications, 2019, 55, 3164-3167.                                               | 4.1  | 36        |
| 182 | Systematic Control of the Orientation of Organic Phosphorescent Pt Complexes in Thin Films for Increased Optical Outcoupling. Advanced Materials, 2019, 31, e1900921.     | 21.0 | 35        |
| 183 | Fluorophores Related to the Green Fluorescent Protein and Their Use in Optoelectronic Devices.<br>Advanced Materials, 2000, 12, 1678-1681.                                | 21.0 | 34        |
| 184 | Spin-orbit coupling routes and OLED performance: studies of blue-light emitting Ir(III) and Pt(II) complexes. Proceedings of SPIE, 2007, , .                              | 0.8  | 32        |
| 185 | Triplet state relaxation processes of the OLED emitter Pt(4,6-dFppy)(acac). Chemical Physics Letters, 2009, 468, 46-51.                                                   | 2.6  | 32        |
| 186 | Substituted 1,3-Bis(imino)isoindole Diols: A New Class of Proton Transfer Dyes. Organic Letters, 2011, 13, 1598-1601.                                                     | 4.6  | 32        |
| 187 | Matrix influence on the OLED emitter Ir(btp)2(acac) in polymeric host materials – Studies by persistent<br>spectral hole burning. Organic Electronics, 2008, 9, 641-648.  | 2.6  | 30        |
| 188 | In Situ Observation of Degradation by Ligand Substitution in Small-Molecule Phosphorescent Organic<br>Light-Emitting Diodes. Chemistry of Materials, 2014, 26, 6578-6584. | 6.7  | 30        |
| 189 | Phosphorescence dynamics and spin-lattice relaxation of the OLED emitter Ir(btp)2(acac). Chemical Physics Letters, 2007, 444, 273-279.                                    | 2.6  | 29        |
| 190 | Solvent vapor annealing on perylene-based organic solar cells. Journal of Materials Chemistry A, 2015,<br>3, 15700-15709.                                                 | 10.3 | 29        |
| 191 | Electrophosphorescence from substituted poly(thiophene) doped with iridium or platinum complex.<br>Thin Solid Films, 2004, 468, 226-233.                                  | 1.8  | 28        |
| 192 | Current Challenges in Organic Photovoltaic Solar Energy Conversion. Topics in Current Chemistry, 2011, 312, 175-212.                                                      | 4.0  | 27        |
| 193 | Chemical surface modification of parylene C for enhanced protein immobilization and cell proliferation. Acta Biomaterialia, 2011, 7, 3746-3756.                           | 8.3  | 26        |
| 194 | Boron Dipyridylmethene (DIPYR) Dyes: Shedding Light on Pyridine-Based Chromophores. Journal of<br>Organic Chemistry, 2017, 82, 7215-7222.                                 | 3.2  | 26        |
| 195 | Actuation of polypyrrole nanowires. Nanotechnology, 2008, 19, 165501.                                                                                                     | 2.6  | 25        |
| 196 | Exciplex quenching of a luminescent cyclometallated platinum complex by extremely poor Lewis bases.<br>Chemical Communications, 2009, , 4215.                             | 4.1  | 25        |
| 197 | Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance. Chemistry of Materials, 2012, 24, 2583-2591.      | 6.7  | 24        |
| 198 | Virtual screening of electron acceptor materials for organic photovoltaic applications. New Journal of Physics, 2013, 15, 105029.                                         | 2.9  | 24        |

| #   | Article                                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Combined magnetic resonance and optical imaging of head and neck tumor xenografts using<br>Gadolinium-labelled phosphorescent polymeric nanomicelles. Head & Neck Oncology, 2010, 2, 35.                                                                                                   | 2.3  | 23        |
| 200 | Acetylide-bridged tetracene dimers. Chemical Communications, 2011, 47, 3754.                                                                                                                                                                                                               | 4.1  | 23        |
| 201 | Hydrothermal Synthesis, Crystal Structure, and Magnetic Properties of Cs[(V2O3)(HPO4)2(H2O)], a<br>Mixed-Valence Vanadium (IV, V) Hydrogen Phosphate with a One-Dimensional (-VIV-O-VV-O-) Chain of<br>Corner-Sharing VO6 Octahedra. Journal of Solid State Chemistry, 1994, 109, 259-264. | 2.9  | 22        |
| 202 | Fabrication of Polystyrene Latex Nanostructures by Nanomanipulation and Thermal Processing. Nano<br>Letters, 2005, 5, 2624-2629.                                                                                                                                                           | 9.1  | 22        |
| 203 | Tuning State Energies for Narrow Blue Emission in Tetradentate Pyridyl-Carbazole Platinum<br>Complexes. Inorganic Chemistry, 2019, 58, 12348-12357.                                                                                                                                        | 4.0  | 22        |
| 204 | Molecular Orientation of Poly-3-hexylthiophene at the Buried Interface with Fullerene. Journal of<br>Physical Chemistry Letters, 2019, 10, 1757-1762.                                                                                                                                      | 4.6  | 22        |
| 205 | Excited-State Distortions of Cyclometalated Ir(III) Complexes Determined from the Vibronic Structure in Luminescence Spectra. Journal of Physical Chemistry A, 2007, 111, 3256-3262.                                                                                                       | 2.5  | 21        |
| 206 | Molecular Alignment of Homoleptic Iridium Phosphors in Organic Lightâ€Emitting Diodes. Advanced<br>Materials, 2021, 33, e2102882.                                                                                                                                                          | 21.0 | 21        |
| 207 | Advancing Near-Infrared Phosphorescence with Heteroleptic Iridium Complexes Bearing a Single<br>Emitting Ligand: Properties and Organic Light-Emitting Diode Applications. Chemistry of Materials,<br>2022, 34, 574-583.                                                                   | 6.7  | 20        |
| 208 | Toward rational design of TADF two-coordinate coinage metal complexes: understanding the relationship between natural transition orbital overlap and photophysical properties. Journal of Materials Chemistry C, 2022, 10, 4674-4683.                                                      | 5.5  | 20        |
| 209 | Multicomponent Electrodes for Water Oxidation:Â From Combinatorial to Individual Electrode Study.<br>Chemistry of Materials, 2002, 14, 3343-3348.                                                                                                                                          | 6.7  | 19        |
| 210 | Photophysical and electrochemical properties of 1,3-bis(2-pyridylimino)isoindolate platinum(ii)<br>derivatives. Dalton Transactions, 2012, 41, 8648.                                                                                                                                       | 3.3  | 19        |
| 211 | Controlling Symmetry Breaking Charge Transfer in BODIPY Pairs. Accounts of Chemical Research, 2022, 55, 1561-1572.                                                                                                                                                                         | 15.6 | 19        |
| 212 | Platinum and palladium incorporation into phosphate/viologen-phosphonates of zirconium and hafnium: synthesis and characterization. Journal of Molecular Structure, 1998, 470, 191-205.                                                                                                    | 3.6  | 18        |
| 213 | Gram Scale Synthesis of Benzophenanthroline and Its Blue Phosphorescent Platinum Complex.<br>Organic Letters, 2016, 18, 3960-3963.                                                                                                                                                         | 4.6  | 18        |
| 214 | A Luminescent Twoâ€Coordinate Au <sup>I</sup> Bimetallic Complex with a Tandemâ€Carbene Structure: A<br>Molecular Design for the Enhancement of TADF Radiative Decay Rate. Chemistry - A European Journal,<br>2021, 27, 6191-6197.                                                         | 3.3  | 18        |
| 215 | Efficient Energy Sensitization of C <sub>60</sub> and Application to Organic Photovoltaics. Journal of the American Chemical Society, 2013, 135, 11920-11928.                                                                                                                              | 13.7 | 17        |
| 216 | A quinoidal bis-phenalenyl-fused porphyrin with supramolecular organization and broad near-infrared absorption. Chemical Communications, 2016, 52, 1949-1952.                                                                                                                              | 4.1  | 17        |

| #   | Article                                                                                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Organic Solar Cells with Open Circuit Voltage over 1.25 V Employing Tetraphenyldibenzoperiflanthene<br>as the Acceptor. Journal of Physical Chemistry C, 2016, 120, 19027-19034.                                                                                                                                                                   | 3.1  | 16        |
| 218 | Structure and bonding in Group 4 metallocene acetylide and metallacyclopentadiene complexes.<br>Organometallics, 1992, 11, 3691-3696.                                                                                                                                                                                                              | 2.3  | 15        |
| 219 | Implications of Multichromophoric Arrays in Organic Photovoltaics. Chemistry of Materials, 2015, 27, 5386-5392.                                                                                                                                                                                                                                    | 6.7  | 15        |
| 220 | Tuning the Photophysical and Electrochemical Properties of Azaâ€Boronâ€Dipyridylmethenes for Fluorescent Blue OLEDs. Advanced Functional Materials, 2021, 31, 2101175.                                                                                                                                                                             | 14.9 | 15        |
| 221 | Phase transition in amphiphilic poly( <i>N</i> -isopropylacrylamide): controlled gelation. Physical Chemistry Chemical Physics, 2018, 20, 13623-13631.                                                                                                                                                                                             | 2.8  | 14        |
| 222 | Symmetric "Double Spiro―Wide Energy Gap Hosts for Blue Phosphorescent OLED Devices. Advanced<br>Optical Materials, 2022, 10, 2101530.                                                                                                                                                                                                              | 7.3  | 14        |
| 223 | Intercalation of redox-active organometallic cubane clusters into layered metal oxides and related solids. Journal of the Chemical Society Chemical Communications, 1988, , 223.                                                                                                                                                                   | 2.0  | 13        |
| 224 | Surface chemical immobilization of parylene C with thermosensitive block copolymer brushes based<br>on <i>N</i> â€isopropylacrylamide and <i>N</i> â€ <i>tert</i> â€butylacrylamide: Synthesis, characterization,<br>and cell adhesion/detachment. Journal of Biomedical Materials Research - Part B Applied Biomaterials,<br>2012, 100B, 217-229. | 3.4  | 13        |
| 225 | Amorphous vs crystalline exciton blocking layers at the anode interface in planar and planar-mixed heterojunction organic solar cells. Applied Physics Letters, 2014, 104, .                                                                                                                                                                       | 3.3  | 13        |
| 226 | Synthesis and characterization of phosphorescent three-coordinate copper(I) complexes bearing bis(amino)cyclopropenylidene carbene (BAC). Inorganica Chimica Acta, 2018, 482, 246-251.                                                                                                                                                             | 2.4  | 13        |
| 227 | Rapid Multiscale Computational Screening for OLED Host Materials. ACS Applied Materials &<br>Interfaces, 2019, 11, 5276-5288.                                                                                                                                                                                                                      | 8.0  | 13        |
| 228 | A solid-state deuterium NMR investigation of the structure of the ferrocenylethylamineÂ-zirconium<br>hydrogen phosphate intercalation compound. Journal of the Chemical Society Chemical<br>Communications, 1992, .                                                                                                                                | 2.0  | 12        |
| 229 | Higher efficiency conjugated polymer-based LEDs by control of polymer film morphology and interactions. Synthetic Metals, 2001, 119, 523-524.                                                                                                                                                                                                      | 3.9  | 12        |
| 230 | Synthesis and Study of Asymmetrically Layered Zirconium Phosphonates. ACS Symposium Series, 1992, ,<br>166-177.                                                                                                                                                                                                                                    | 0.5  | 11        |
| 231 | Vibrational Sum Frequency Generation Study of the Interference Effect on a Thin Film of<br>4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP) and Its Interfacial Orientation. ACS Applied Materials &<br>Interfaces, 2020, 12, 26515-26524.                                                                                                               | 8.0  | 11        |
| 232 | Synthesis and characterization of phosphorescent platinum and iridium complexes with cyclometalated corannulene. Dalton Transactions, 2015, 44, 8456-8466.                                                                                                                                                                                         | 3.3  | 10        |
| 233 | Performance of enhanced DuBois type water reduction catalysts (WRC) in artificial photosynthesis –<br>effects of various proton relays during catalysis. Faraday Discussions, 2019, 215, 141-161.                                                                                                                                                  | 3.2  | 10        |
| 234 | Synthesis and characterization of phosphorescent cyclometalated Ir and Pt heteroleptic complexes using cyclophane-based chelates. Polyhedron, 2016, 116, 182-188.                                                                                                                                                                                  | 2.2  | 9         |

| #   | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Synthesis and characterization of phosphorescent isomeric iridium complexes with a rigid cyclometalating ligand. Polyhedron, 2018, 140, 138-145.                                                                       | 2.2  | 9         |
| 236 | Tetraâ€Azaâ€Pentacenes by means of a Oneâ€Pot Friedläder Synthesis. Chemistry - A European Journal, 2019,<br>25, 1472-1475.                                                                                            | 3.3  | 9         |
| 237 | From Molecules to Materials: Current Trends and Future Directions. Advanced Materials, 1998, 10, 1297-1336.                                                                                                            | 21.0 | 9         |
| 238 | Whole-Cell Sensing for a Harmful Bloom-Forming Microscopic Alga by Measuring Antibody–Antigen<br>Forces. IEEE Transactions on Nanobioscience, 2006, 5, 149-156.                                                        | 3.3  | 8         |
| 239 | Selective, Electrochemically Activated Biofunctionalization of In <sub>2</sub> O <sub>3</sub><br>Nanowires Using an Air-Stable Surface Modifier. ACS Applied Materials & Interfaces, 2011, 3,<br>4765-4769.            | 8.0  | 8         |
| 240 | Reciprocal carrier collection in organic photovoltaics. Physical Review B, 2011, 84, .                                                                                                                                 | 3.2  | 8         |
| 241 | Chromophore-labeled dendrimers for use in single-layer light-emitting diodes. Macromolecular<br>Symposia, 2000, 154, 163-170.                                                                                          | 0.7  | 7         |
| 242 | Mercuric Ion Sensing by a Film Bulk Acoustic Resonator. IEEE Transactions on Ultrasonics,<br>Ferroelectrics, and Frequency Control, 2007, 54, 1723-1725.                                                               | 3.0  | 7         |
| 243 | Improvement of metal and tissue adhesion on surfaceâ€modified parylene C. Journal of Biomedical<br>Materials Research - Part A, 2009, 89A, 206-214.                                                                    | 4.0  | 7         |
| 244 | Advances in the development and growth of functional materials: Toward the paradigm of materials by design. MRS Bulletin, 2012, 37, 682-690.                                                                           | 3.5  | 7         |
| 245 | High-Performance Sub-Micrometer Channel WSe <sub>2</sub> Field-Effect Transistors Prepared Using<br>a Flood–Dike Printing Method. ACS Nano, 2017, 11, 12536-12546.                                                     | 14.6 | 7         |
| 246 | Symmetric pyrrolic squaraines and their application to organic photovoltaics. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374, 16-21.                                                               | 3.9  | 7         |
| 247 | π-Extension of heterocycles <i>via</i> a Pd-catalyzed heterocyclic aryne annulation: π-extended donors for TADF emitters. Chemical Science, 2022, 13, 5884-5892.                                                       | 7.4  | 7         |
| 248 | Growth and characterization of potassium-doped superfulleride thin films. Journal of Vacuum<br>Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 2395-2399.                                              | 2.1  | 6         |
| 249 | Vacuum Deposition of Thin Films of Pentaphenylcyclopentadienyl Radical and Their Electronic<br>Properties. Chemistry of Materials, 2002, 14, 109-115.                                                                  | 6.7  | 6         |
| 250 | 22.1: Invited Paper: Color Tuning Dopants for Electrophosphorescent Devices: Toward Efficient Blue<br>Phosphorescence from Metal Complexes. Digest of Technical Papers SID International Symposium,<br>2005, 36, 1058. | 0.3  | 6         |
| 251 | 47.4: Blue Phosphorescent Organic Light Emitting Device Stability Analysis. Digest of Technical Papers<br>SID International Symposium, 2008, 39, 712.                                                                  | 0.3  | 6         |
| 252 | Power losses in bilayer inverted small molecule organic solar cells. Applied Physics Letters, 2012, 101, 233903.                                                                                                       | 3.3  | 6         |

| #   | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Synthesis and photophysical characterization of a bis-pincer osmium complex. Polyhedron, 2014, 84, 136-143.                                                                                                         | 2.2  | 6         |
| 254 | Phosphorescent monometallic and bimetallic two-coordinate Au(I) complexes with N-heterocyclic carbene and aryl ligands. Inorganica Chimica Acta, 2021, 517, 120188.                                                 | 2.4  | 6         |
| 255 | Synthesis and study of zirconium viologen-phosphonate compounds on a polymer surfactant template and their use in photocatalytic production of hydrogen. Supramolecular Science, 1997, 4, 35-42.                    | 0.7  | 5         |
| 256 | Electrical properties of K-doped superfulleride thin films. Journal of Applied Physics, 1999, 85, 3696-3700.                                                                                                        | 2.5  | 5         |
| 257 | Doped Organic Light-Emitting Diodes Based on Random Copolymers Containing Both Hole and<br>Electron Transport Groups. Materials Research Society Symposia Proceedings, 1999, 558, 433.                              | 0.1  | 5         |
| 258 | Metal (IV) tetras (8-hydroxyquinoline) (M = Zr, Hf) used as electroluminescent material and electron-transport layer in OLEDs. Journal of the Society for Information Display, 2005, 13, 405.                       | 2.1  | 5         |
| 259 | Wavelength-Dependent Photofragmentation of a Mixed-Ligand Cyclometalated Platinum(II)<br>Coordination Compound in a Molecular Beam. Inorganic Chemistry, 2008, 47, 2389-2395.                                       | 4.0  | 5         |
| 260 | Effect of Sulfur Poisoning in High Pressure Catalytic Partial Oxidation of Methane over<br>Rhâ^'Ce/Al <sub>2</sub> O <sub>3</sub> Catalyst. Industrial & Engineering Chemistry Research, 2011,<br>50, 4373-4380.    | 3.7  | 5         |
| 261 | Molecular dynamics of four-coordinate carbene-Cu(I) complexes employing tris(pyrazolyl)borate<br>ligands. Polyhedron, 2020, 180, 114381.                                                                            | 2.2  | 5         |
| 262 | <title>Color-tunable pixels and lasers using vacuum-deposited organic thin films</title> . , 1997, , .                                                                                                              |      | 4         |
| 263 | Small-molecule organic light-emitting devices in flat panel display applications. , 1998, 3279, 87.                                                                                                                 |      | 4         |
| 264 | High-efficiency organic electrophosphorescent devices. , 2001, 4105, 119.                                                                                                                                           |      | 4         |
| 265 | Multichromophoric energy sensitization of C60 for organic photovoltaics. Applied Physics Letters, 2014, 105, 113305.                                                                                                | 3.3  | 4         |
| 266 | In Vivo Experimental and Analytical Studies for Bevacizumab Diffusion Coefficient Measurement in the<br>Rabbit Vitreous Humor. Journal of Heat Transfer, 2021, 143, 032101.                                         | 2.1  | 4         |
| 267 | Efficient photoinduced charge separation in layered zirconium viologen phosphonate compounds.<br>[Erratum to document cited in CA120(2):18913f]. Journal of the American Chemical Society, 1994, 116,<br>3175-3175. | 13.7 | 3         |
| 268 | Influence of Dimethyl Sulfoxide on the Structural Topology during Crystallization of Pbl <sub>2</sub> . Inorganic Chemistry, 2020, 59, 16799-16803.                                                                 | 4.0  | 3         |
| 269 | Dynamics of rotation in twoâ€coordinate thiazolyl copper(I) carbazolyl complexes. Applied<br>Organometallic Chemistry, 0, , .                                                                                       | 3.5  | 3         |
| 270 | <title>Organic light-emitting devices for ultralightweight color flat panel displays</title> . , 1997, , .                                                                                                          |      | 2         |

| #   | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Pâ€204: <i>Distinguished Poster Paper</i> : A Near Infrared OLED for Day/Night Display. Digest of Technical Papers SID International Symposium, 2008, 39, 1975-1977.                                       | 0.3  | 2         |
| 272 | Metal deposition for optoelectronic devices using a low vacuum vapor phase deposition (VPD) system.<br>Organic Electronics, 2014, 15, 3052-3060.                                                           | 2.6  | 2         |
| 273 | Decoupling inter- and intra-dimer singlet fission. , 2017, , .                                                                                                                                             |      | 2         |
| 274 | Intercalation-Induced Reactions of Iron Oxychloride. Journal of Solid State Chemistry, 1994, 113, 261-271.                                                                                                 | 2.9  | 1         |
| 275 | Cyclooctatetrene derivatives as electron transporters and hole blocker in organic LEDs. , 2001, , .                                                                                                        |      | 1         |
| 276 | Cyclometallated Organoiridium Complexes as Emitters in Electrophosphorescent Devices. , 0, , 131-161.                                                                                                      |      | 1         |
| 277 | Investigation of the Thermal Stability of 2-D Patterns of Au Nanoparticles. Journal of Nanoscience and Nanotechnology, 2007, 7, 2863-2869.                                                                 | 0.9  | 1         |
| 278 | Solar Cells: Reâ€evaluating the Role of Sterics and Electronic Coupling in Determining the Openâ€Circuit<br>Voltage of Organic Solar Cells (Adv. Mater. 42/2013). Advanced Materials, 2013, 25, 5990-5990. | 21.0 | 1         |
| 279 | Top-down Fabricated Polysilicon Nanoribbon Biosensor Chips for Cancer Diagnosis. Materials<br>Research Society Symposia Proceedings, 2013, 1569, 213-218.                                                  | 0.1  | 1         |
| 280 | ORGANIC LIGHT EMITTING DEVICES. Materials and Energy, 2016, , 195-241.                                                                                                                                     | 0.1  | 1         |
| 281 | Synthesis and Characterization of Zinc(II) Complexes Bearing 4-Acridinol and 1-Phenazinol Ligands.<br>Inorganic Chemistry, 2021, 60, 866-871.                                                              | 4.0  | 1         |
| 282 | Hole Transporting Materials with High Glass Transition Temperatures for Use in Organic<br>Light-Emitting Devices. , 1998, 10, 1108.                                                                        |      | 1         |
| 283 | From Molecules to Materials: Current Trends and Future Directions. , 1998, 10, 1297.                                                                                                                       |      | 1         |
| 284 | Triple-doped white organic light-emitting devices grown in vacuum. , 2004, , .                                                                                                                             |      | 0         |
| 285 | Nanosensing applications of In 2 O 3 nanowires and carbon nanotubes. , 2005, 6008, 75.                                                                                                                     |      | 0         |
| 286 | Squaraine donors for high efficiency small molecule solar cells. , 2011, , .                                                                                                                               |      | 0         |
| 287 | Electron conducting buffer layers in organic photovoltaics. , 2011, , .                                                                                                                                    |      | 0         |
| 288 | Exciton Migration in Organic LEDs and Solar Cells. , 2008, , .                                                                                                                                             |      | 0         |

| #   | Article                                                                                                                                  | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Organic Materials for Solar Photovoltaics. , 2009, , .                                                                                   |      | 0         |
| 290 | Morphology of the D/A interface in vapor deposited bilayer organic photovoltaics. , 2017, , .                                            |      | 0         |
| 291 | Tuning the Optical and Photophysical Properties of Boron Aza-Dipyridylmethene dyes for<br>Optoelectronics Application. , 2019, , .       |      | Ο         |
| 292 | Tuning Singlet and Triplet Excited State Energies and Frontier Orbitals of Imidazole Host/Emitter for<br>Hybrid White OLEDs. , 2019, , . |      | 0         |
| 293 | Editorial for the special issue of <i>Materials Horizons</i> in honor of Seth Marder. Materials<br>Horizons, 2022, 9, 15-16.             | 12.2 | 0         |