René Hen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6110626/publications.pdf

Version: 2024-02-01

		4388	5679
161	35,655	86	162
papers	citations	h-index	g-index
160	1.60	1.00	25524
169	169	169	25524
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Requirement of Hippocampal Neurogenesis for the Behavioral Effects of Antidepressants. Science, 2003, 301, 805-809.	12.6	3,912
2	Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 2011, 472, 466-470.	27.8	1,352
3	An <i>in vivo</i> correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5638-5643.	7.1	1,151
4	Neurogenesis-Dependent and -Independent Effects of Fluoxetine in an Animal Model of Anxiety/Depression. Neuron, 2009, 62, 479-493.	8.1	1,080
5	Adult hippocampal neurogenesis in depression. Nature Neuroscience, 2007, 10, 1110-1115.	14.8	1,041
6	Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell, 2018, 22, 589-599.e5.	11.1	977
7	Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17501-17506.	7.1	915
8	Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature, 2002, 416, 396-400.	27.8	866
9	Early-Life Blockade of the 5-HT Transporter Alters Emotional Behavior in Adult Mice. Science, 2004, 306, 879-881.	12.6	756
10	Adult hippocampal neurogenesis and cognitive flexibility â€" linking memory and mood. Nature Reviews Neuroscience, 2017, 18, 335-346.	10.2	725
11	Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell, 2018, 23, 25-30.	11.1	601
12	Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology, 2009, 34, 2376-2389.	5.4	588
13	Differential Control of Learning and Anxiety along the Dorsoventral Axis of the Dentate Gyrus. Neuron, 2013, 77, 955-968.	8.1	582
14	Effects of Chronic Fluoxetine in Animal Models of Anxiety and Depression. Neuropsychopharmacology, 2004, 29, 1321-1330.	5.4	572
15	Hippocampal Neurogenesis: Regulation by Stress and Antidepressants. Biological Psychiatry, 2006, 59, 1136-1143.	1.3	553
16	Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. ELife, 2018, 7, .	6.0	489
17	Drug-Dependent Requirement of Hippocampal Neurogenesis in a Model of Depression and of Antidepressant Reversal. Biological Psychiatry, 2008, 64, 293-301.	1.3	482
18	Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nature Neuroscience, 2012, 15, 1613-1620.	14.8	482

#	Article	IF	CITATIONS
19	Chronic Fluoxetine Stimulates Maturation and Synaptic Plasticity of Adult-Born Hippocampal Granule Cells. Journal of Neuroscience, 2008, 28, 1374-1384.	3.6	474
20	Different data from different labs: Lessons from studies of gene-environment interaction. Journal of Neurobiology, 2003, 54, 283-311.	3.6	450
21	Increasing Adult Hippocampal Neurogenesis is Sufficient to Reduce Anxiety and Depression-Like Behaviors. Neuropsychopharmacology, 2015, 40, 2368-2378.	5.4	440
22	Pattern Separation: A Common Function for New Neurons in Hippocampus and Olfactory Bulb. Neuron, 2011, 70, 582-588.	8.1	432
23	Hippocampal Memory Traces Are Differentially Modulated by Experience, Time, and Adult Neurogenesis. Neuron, 2014, 83, 189-201.	8.1	425
24	Dendritic Inhibition in the Hippocampus Supports Fear Learning. Science, 2014, 343, 857-863.	12.6	420
25	Anxiety Cells in a Hippocampal-Hypothalamic Circuit. Neuron, 2018, 97, 670-683.e6.	8.1	408
26	Antidepressant-Induced Neurogenesis in the Hippocampus of Adult Nonhuman Primates. Journal of Neuroscience, 2007, 27, 4894-4901.	3.6	401
27	Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature, 2018, 559, 98-102.	27.8	399
28	Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nature Neuroscience, 2006, 9, 729-731.	14.8	394
29	5-HT1A Autoreceptor Levels Determine Vulnerability to Stress and Response to Antidepressants. Neuron, 2010, 65, 40-52.	8.1	373
30	Elevated alcohol consumption in null mutant mice lacking 5â€"HT1B serotonin receptors. Nature Genetics, 1996, 14, 98-101.	21,4	349
31	Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biological Psychiatry, 2003, 54, 960-971.	1.3	338
32	Distinct Contribution of Adult-Born Hippocampal Granule Cells to Context Encoding. Neuron, 2016, 90, 101-112.	8.1	319
33	Treatment resistant depression: A multi-scale, systems biology approach. Neuroscience and Biobehavioral Reviews, 2018, 84, 272-288.	6.1	319
34	The current state of the neurogenic theory of depression and anxiety. Current Opinion in Neurobiology, 2015, 30, 51-58.	4.2	314
35	Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature, 1998, 393, 175-178.	27.8	309
36	Behavioral Effects of Chronic Fluoxetine in BALB/cJ Mice Do Not Require Adult Hippocampal Neurogenesis or the Serotonin 1A Receptor. Neuropsychopharmacology, 2008, 33, 406-417.	5.4	275

#	Article	IF	CITATIONS
37	Hippocampal Granule Neuron Number and Dentate Gyrus Volume in Antidepressant-Treated and Untreated Major Depression. Neuropsychopharmacology, 2013, 38, 1068-1077.	5.4	268
38	Adultâ€born hippocampal neurons promote cognitive flexibility in mice. Hippocampus, 2012, 22, 1795-1808.	1.9	267
39	Hippocampal Angiogenesis and Progenitor Cell Proliferation Are Increased with Antidepressant Use in Major Depression. Biological Psychiatry, 2012, 72, 562-571.	1.3	265
40	Excessive Activation of Serotonin (5-HT) 1B Receptors Disrupts the Formation of Sensory Maps in Monoamine Oxidase A and 5-HT Transporter Knock-Out Mice. Journal of Neuroscience, 2001, 21, 884-896.	3.6	258
41	Neurogenesis and affective disorders. European Journal of Neuroscience, 2011, 33, 1152-1159.	2.6	247
42	Dissecting the role of the serotonin system in neuropsychiatric disorders using knockout mice. Psychopharmacology, 2001, 155, 1-10.	3.1	241
43	The Behavioral Effects of the Antidepressant Tianeptine Require the Mu-Opioid Receptor. Neuropsychopharmacology, 2017, 42, 2052-2063.	5.4	240
44	The participation of cortical amygdala in innate, odour-driven behaviour. Nature, 2014, 515, 269-273.	27.8	235
45	Altered Emotional States in Knockout Mice Lacking 5-HT1A or 5-HT1B Receptors. Neuropsychopharmacology, 1999, 21, 52S-60S.	5.4	228
46	Insights into the Neurobiology of Impulsive Behavior from Serotonin Receptor Knockout Mice. Annals of the New York Academy of Sciences, 1997, 836, 81-105.	3.8	222
47	Paradoxical influence of hippocampal neurogenesis on working memory. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4642-4646.	7.1	218
48	Young and excitable: the function of new neurons in the adult mammalian brain. Current Opinion in Neurobiology, 2005, 15, 121-128.	4.2	217
49	Necessity of Hippocampal Neurogenesis for the Therapeutic Action of Antidepressants in Adult Nonhuman Primates. PLoS ONE, 2011, 6, e17600.	2.5	205
50	5-HT1B Receptor Knock-Out Mice Exhibit Increased Exploratory Activity and Enhanced Spatial Memory Performance in the Morris Water Maze. Journal of Neuroscience, 1999, 19, 6157-6168.	3.6	202
51	Ketamine as a Prophylactic Against Stress-Induced Depressive-like Behavior. Biological Psychiatry, 2016, 79, 776-786.	1.3	201
52	Increased Exploratory Activity and Altered Response to LSD in Mice Lacking the 5-HT5A Receptor. Neuron, 1999, 22, 581-591.	8.1	184
53	Experience Dictates Stem Cell Fate in the Adult Hippocampus. Neuron, 2011, 70, 908-923.	8.1	183
54	5-Hydroxytryptamine receptor subtypes in vertebrates and invertebrates. Neurochemistry International, 1994, 25, 503-532.	3.8	175

#	Article	IF	Citations
55	4―to 6â€weekâ€old adultâ€born hippocampal neurons influence noveltyâ€evoked exploration and contextual fear conditioning. Hippocampus, 2012, 22, 1188-1201.	1.9	174
56	Key Role of 5-HT _{1B} Receptors in the Regulation of Paradoxical Sleep as Evidenced in 5-HT _{1B} Knock-Out Mice. Journal of Neuroscience, 1999, 19, 3204-3212.	3.6	169
57	Serotonin-1A Autoreceptors Are Necessary and Sufficient for the Normal Formation of Circuits Underlying Innate Anxiety. Journal of Neuroscience, 2011, 31, 6008-6018.	3.6	169
58	Altered fear circuits in 5-HT1A receptor KO mice. Biological Psychiatry, 2000, 48, 1157-1163.	1.3	166
59	Effects of adultâ€generated granule cells on coordinated network activity in the dentate gyrus. Hippocampus, 2012, 22, 106-116.	1.9	158
60	Adult neurogenesis modifies excitability of the dentate gyrus. Frontiers in Neural Circuits, 2013, 7, 204.	2.8	157
61	Genetics of Affective and Anxiety Disorders. Annual Review of Psychology, 2006, 57, 117-137.	17.7	156
62	5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response. Nature Neuroscience, 2015, 18, 1606-1616.	14.8	156
63	A Novel Method for Chronic Social Defeat Stress in Female Mice. Neuropsychopharmacology, 2018, 43, 1276-1283.	5.4	155
64	The Serotonergic System and Anxiety. NeuroMolecular Medicine, 2004, 5, 027-040.	3.4	153
65	Absence of Fenfluramine-Induced Anorexia and Reduced c-fos Induction in the Hypothalamus and Central Amygdaloid Complex of Serotonin 1B Receptor Knock-Out Mice. Journal of Neuroscience, 1998, 18, 5537-5544.	3.6	149
66	Complications associated with genetic background effects in research using knockout mice. Psychopharmacology, 1999, 147, 5-7.	3.1	147
67	NR2B-Dependent Plasticity of Adult-Born Granule Cells is Necessary for Context Discrimination. Journal of Neuroscience, 2012, 32, 8696-8702.	3.6	141
68	Arrest of adult hippocampal neurogenesis in mice impairs single- but not multiple-trial contextual fear conditioning Behavioral Neuroscience, 2010, 124, 446-454.	1.2	140
69	Adult-born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyrus. Science, 2019, 364, 578-583.	12.6	138
70	Absence of 5-HT1B receptors is associated with impaired impulse control in male 5-HT1B knockout mice. Biological Psychiatry, 2001, 49, 557-568.	1.3	134
71	Neuroanatomic Differences Associated With Stress Susceptibility and Resilience. Biological Psychiatry, 2016, 79, 840-849.	1.3	132
72	Functional dissociation of adultâ€born neurons along the dorsoventral axis of the dentate gyrus. Hippocampus, 2014, 24, 751-761.	1.9	131

#	Article	IF	CITATIONS
73	Relationship of Psychopathology to the Human Serotonin1B Genotype and Receptor Binding Kinetics in Postmortem Brain Tissue. Neuropsychopharmacology, 1999, 21, 238-246.	5.4	129
74	Modulating Neuronal Competition Dynamics in the Dentate Gyrus to Rejuvenate Aging Memory Circuits. Neuron, 2016, 91, 1356-1373.	8.1	128
75	Rapid Anxiolytic Effects of a 5-HT4 Receptor Agonist Are Mediated by a Neurogenesis-Independent Mechanism. Neuropsychopharmacology, 2014, 39, 1366-1378.	5.4	127
76	Activation of local inhibitory circuits in the dentate gyrus by adultâ€born neurons. Hippocampus, 2016, 26, 763-778.	1.9	126
77	Pcdhαc2 is required for axonal tiling and assembly of serotonergic circuitries in mice. Science, 2017, 356, 406-411.	12.6	121
78	Serotonin receptors in depression: from A to B. F1000Research, 2017, 6, 123.	1.6	121
79	Commentary: The broken mouse: the role of development, plasticity and environment in the interpretation of phenotypic changes in knockout mice. Current Opinion in Neurobiology, 2000, 10, 146-152.	4.2	114
80	Adult Hippocampal Neurogenesis as Target for the Treatment of Depression. CNS and Neurological Disorders - Drug Targets, 2007, 6, 205-218.	1.4	113
81	Serotonin 1B receptor modulation of startle reactivity, habituation, and prepulse inhibition in wild-type and serotonin 1B knockout mice. Psychopharmacology, 1997, 132, 125-134.	3.1	112
82	NEUROSCIENCE: Is More Neurogenesis Always Better?. Science, 2007, 315, 336-338.	12.6	109
83	Antidepressant and anxiolytic potential of the multimodal antidepressant vortioxetine (Lu AA21004) assessed by behavioural and neurogenesis outcomes in mice. Neuropharmacology, 2013, 73, 147-159.	4.1	108
84	A Distributed Neural Code in the Dentate Gyrus and in CA1. Neuron, 2020, 107, 703-716.e4.	8.1	105
85	Adult neurogenesis in the mammalian hippocampus: Why the dentate gyrus?. Learning and Memory, 2013, 20, 710-729.	1.3	104
86	Serotonin receptor expression along the dorsal–ventral axis of mouse hippocampus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2395-2401.	4.0	98
87	Modulation of the effects of cocaine by 5-HT1B receptors: a comparison of knockouts and antagonists. Pharmacology Biochemistry and Behavior, 2000, 67, 559-566.	2.9	92
88	Beneficial behavioural and neurogenic effects of agomelatine in a model of depression/anxiety. International Journal of Neuropsychopharmacology, 2012, 15, 321-335.	2.1	91
89	5-Hydroxytryptamine _{1B} Receptors Modulate the Effect of Cocaine on c- <i>fos</i> Expression: Converging Evidence Using 5-Hydroxytryptamine _{1B} Knockout Mice and the 5-Hydroxytryptamine _{1B/1D} Antagonist GR127935. Molecular Pharmacology, 1997, 51, 755-763.	2.3	90
90	Role of adult hippocampal neurogenesis in persistent pain. Pain, 2016, 157, 418-428.	4.2	90

#	Article	IF	Citations
91	Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Molecular Psychiatry, 2022, 27, 2689-2699.	7.9	90
92	Dentate gyrus neurogenesis and depression. Progress in Brain Research, 2007, 163, 697-822.	1.4	88
93	Distinct Circuits Underlie the Effects of 5-HT1B Receptors on Aggression and Impulsivity. Neuron, 2015, 86, 813-826.	8.1	87
94	Altered Serotonin and Dopamine Metabolism in the CNS of Serotonin 5-HT1A or 5-HT1B Receptor Knockout Mice. Journal of Neurochemistry, 2008, 75, 2415-2426.	3.9	81
95	Contextual fear memory retrieval by correlated ensembles of ventral CA1 neurons. Nature Communications, 2020, 11, 3492.	12.8	81
96	Suppression of Adult Neurogenesis Increases the Acute Effects of Kainic Acid. Experimental Neurology, 2015, 264, 135-149.	4.1	79
97	Intravenous Cocaine Self-Administration in Mice Lacking 5-HT1B Receptors. Pharmacology Biochemistry and Behavior, 1997, 57, 407-412.	2.9	78
98	Serotonin 1A and Serotonin 4 Receptors. Neuroscientist, 2016, 22, 26-45.	3. 5	77
99	Modeling treatment-resistant depression. Neuropharmacology, 2011, 61, 408-413.	4.1	76
100	5-HT1B Autoreceptors limit the effects of selective serotonin re-uptake inhibitors in mouse hippocampus and frontal cortex. Journal of Neurochemistry, 2008, 76, 865-871.	3.9	75
101	Adaptive changes in serotonin neurons of the raphe nuclei in 5-HT4receptor knock-out mouse. European Journal of Neuroscience, 2006, 24, 1053-1062.	2.6	74
102	Developmental Effects of Serotonin 1A Autoreceptors on Anxiety and Social Behavior. Neuropsychopharmacology, 2014, 39, 291-302.	5.4	72
103	Resilience Is Associated With Larger Dentate Gyrus, While Suicide Decedents With Major Depressive Disorder Have Fewer Granule Neurons. Biological Psychiatry, 2019, 85, 850-862.	1.3	70
104	Experience-Dependent Regulation of Dentate Gyrus Excitability by Adult-Born Granule Cells. Journal of Neuroscience, 2015, 35, 11656-11666.	3.6	65
105	Mean Genes. Neuron, 1996, 16, 17-21.	8.1	64
106	State-Dependent Alterations in Hippocampal Oscillations in Serotonin 1A Receptor-Deficient Mice. Journal of Neuroscience, 2005, 25, 6509-6519.	3.6	62
107	Loss of Striatonigral GABAergic Presynaptic Inhibition Enables Motor Sensitization in Parkinsonian Mice. Neuron, 2015, 87, 976-988.	8.1	62
108	Contributions of adult neurogenesis to dentate gyrus network activity and computations. Behavioural Brain Research, 2019, 374, 112112.	2.2	61

#	Article	IF	Citations
109	Impact of Social Status and Antidepressant Treatment on Neurogenesis in the Baboon Hippocampus. Neuropsychopharmacology, 2014, 39, 1861-1871.	5.4	60
110	Regulation of [3H]5-HT release in raphe, frontal cortex and hippocampus of 5-HT1B knock-out mice. NeuroReport, 1995, 7, 353-359.	1.2	57
111	Regional changes in density of serotonin transporter in the brain of 5-HT1Aand 5-HT1Bknockout mice, and of serotonin innervation in the 5-HT1Bknockout. Journal of Neurochemistry, 2001, 78, 619-630.	3.9	57
112	Increasing adult hippocampal neurogenesis in mice after exposure to unpredictable chronic mild stress may counteract some of the effects of stress. Neuropharmacology, 2017, 126, 179-189.	4.1	55
113	Anxiolytic-like actions of toluene in the burying behavior and plus-maze tests: differences in sensitivity between 5-HT1B knockout and wild-type mice. Behavioural Brain Research, 2000, 115, 85-94.	2.2	54
114	Considerations for Assessing the Extent of Hippocampal Neurogenesis in the Adult and Aging Human Brain. Cell Stem Cell, 2018, 23, 782-783.	11.1	52
115	Functional Differentiation of Adult-Born Neurons along the Septotemporal Axis of the Dentate Gyrus: Figure 1 Cold Spring Harbor Perspectives in Biology, 2015, 7, a018978.	5.5	51
116	Adaption of the serotoninergic neuronal phenotype in the absence of 5-HT autoreceptors or the 5-HT transporter: involvement of BDNF and cAMP. European Journal of Neuroscience, 2004, 19, 937-944.	2.6	49
117	Spatial Learning in the 5-HT1B Receptor Knockout Mouse: Selective Facilitation/Impairment Depending on the Cognitive Demand. Learning and Memory, 2003, 10, 466-477.	1.3	46
118	Benzodiazepines and the potential trophic effect of antidepressants on dentate gyrus cells in mood disorders. International Journal of Neuropsychopharmacology, 2014, 17, 1923-1933.	2.1	46
119	5-HT1B receptor knockout, but not 5-HT1A receptor knockout mice, show reduced startle reactivity and footshock-induced sensitization, as measured with the acoustic startle response. Behavioural Brain Research, 2001, 118, 169-178.	2.2	44
120	From Psychiatric Disorders to Animal Models: A Bidirectional and Dimensional Approach. Biological Psychiatry, 2015, 77, 15-21.	1.3	44
121	A Lack of Serotonin 1B Autoreceptors Results in Decreased Anxiety and Depression-Related Behaviors. Neuropsychopharmacology, 2016, 41, 2941-2950.	5.4	44
122	Single-cell activity and network properties of dorsal raphe nucleus serotonin neurons during emotionally salient behaviors. Neuron, 2022, 110, 2664-2679.e8.	8.1	40
123	Genetic and environmental factors interact to influence anxiety. Neurotoxicity Research, 2004, 6, 493-501.	2.7	39
124	Characterization of 5-HT1A/1Bâ^'/â^' mice: An animal model sensitive to anxiolytic treatments. Neuropharmacology, 2011, 61, 478-488.	4.1	38
125	A method for biomarker measurements in peripheral blood mononuclear cells isolated from anxious and depressed mice: \hat{l}^2 -arrestin 1 protein levels in depression and treatment. Frontiers in Pharmacology, 2013, 4, 124.	3.5	35
126	Abrogated Freud-1/Cc2d1a Repression of 5-HT1A Autoreceptors Induces Fluoxetine-Resistant Anxiety/Depression-Like Behavior. Journal of Neuroscience, 2017, 37, 11967-11978.	3.6	35

#	Article	IF	CITATIONS
127	Running rescues a fear-based contextual discrimination deficit in aged mice. Frontiers in Systems Neuroscience, 2015, 9, 114.	2.5	32
128	Adult neurogenesis augmentation attenuates anhedonia and HPA axis dysregulation in a mouse model of chronic stress and depression. Psychoneuroendocrinology, 2021, 124, 105097.	2.7	32
129	Gambling disorder: an integrative review of animal and human studies. Annals of the New York Academy of Sciences, 2017, 1394, 106-127.	3.8	31
130	Hippocampal Subfields and Major Depressive Disorder. Biological Psychiatry, 2015, 77, 210-211.	1.3	30
131	Concentration-Dependent Dual Mode of Zn Action at Serotonin 5-HT1A Receptors: In Vitro and In Vivo Studies. Molecular Neurobiology, 2016, 53, 6869-6881.	4.0	30
132	S 38093, a histamine H3 antagonist/inverse agonist, promotes hippocampal neurogenesis and improves context discrimination task in aged mice. Scientific Reports, 2017, 7, 42946.	3.3	29
133	Genetic and Modeling Approaches Reveal Distinct Components of Impulsive Behavior. Neuropsychopharmacology, 2017, 42, 1182-1191.	5.4	29
134	Participation of 5-HT1B receptors in the inhibitory actions of serotonin on masculine sexual behaviour of mice: pharmacological analysis in 5-HT1B receptor knockout mice. British Journal of Pharmacology, 2002, 136, 1127-1134.	5.4	28
135	Protective effect of 5-HT1B receptor gene deletion on the age-related decline in spatial learning abilities in mice. Behavioural Brain Research, 2003, 142, 135-142.	2.2	28
136	Variation in the Large-Scale Organization of Gene Expression Levels in the Hippocampus Relates to Stable Epigenetic Variability in Behavior. PLoS ONE, 2008, 3, e3344.	2.5	28
137	Loss of MeCP2 in adult 5-HT neurons induces 5-HT1A autoreceptors, with opposite sex-dependent anxiety and depression phenotypes. Scientific Reports, 2018, 8, 5788.	3.3	28
138	Targeting Kruppel-like Factor 9 in Excitatory Neurons Protects against Chronic Stress-Induced Impairments in Dendritic Spines and Fear Responses. Cell Reports, 2018, 23, 3183-3196.	6.4	28
139	Rapid Anxiolytic Effects of RS67333, a Serotonin Type 4 Receptor Agonist, and Diazepam, a Benzodiazepine, Are Mediated by Projections From the Prefrontal Cortex to the Dorsal Raphe Nucleus. Biological Psychiatry, 2020, 87, 514-525.	1.3	27
140	Novel strategies to probe the functions of serotonin receptors. Biological Psychiatry, 1998, 44, 163-168.	1.3	25
141	Adult Neurogenesis and Antidepressant Treatment: The Surprise Finding by Ron Duman and the Field 20 Years Later. Biological Psychiatry, 2021, 90, 96-101.	1.3	24
142	Corticosterone responses in 5-HT1B receptor knockout mice to stress or 5-HT1A receptor activation are normal. Psychopharmacology, 2001, 153, 484-490.	3.1	23
143	Genetic Pharmacotherapy as an Early CNS Drug Development Strategy: Testing Glutaminase Inhibition for Schizophrenia Treatment in Adult Mice. Frontiers in Systems Neuroscience, 2015, 9, 165.	2.5	23
144	Global State Measures of the Dentate Gyrus Gene Expression System Predict Antidepressant-Sensitive Behaviors. PLoS ONE, 2014, 9, e85136.	2.5	21

#	Article	IF	CITATIONS
145	Loss of Adult 5-HT1A Autoreceptors Results in a Paradoxical Anxiogenic Response to Antidepressant Treatment. Journal of Neuroscience, 2019, 39, 1334-1346.	3.6	19
146	Increasing Adult Hippocampal Neurogenesis Promotes Resilience in a Mouse Model of Depression. Cells, 2021, 10, 972.	4.1	19
147	Knockout Corner. International Journal of Neuropsychopharmacology, 1999, 2, 145-150.	2.1	18
148	Combining genetic and genomic approaches to study mood disorders. European Neuropsychopharmacology, 2001, 11, 413-421.	0.7	17
149	Parallel processing of sensory cue and spatial information in the dentate gyrus. Cell Reports, 2022, 38, 110257.	6.4	17
150	Optimization of immunolabeling and clearing techniques for indelibly labeled memory traces. Hippocampus, 2018, 28, 523-535.	1.9	16
151	Serotonin/Dopamine Interactions in a Hyperactive Mouse: Reduced Serotonin Receptor 1B Activity Reverses Effects of Dopamine Transporter Knockout. PLoS ONE, 2014, 9, e115009.	2.5	16
152	Startle responses, heart rate, and temperature in 5-HT1B receptor knockout mice. NeuroReport, 2000, 11, 4097-4102.	1.2	14
153	GluN2B-Containg NMDA Receptors on Adult-Born Granule Cells Contribute to the Antidepressant Action of Fluoxetine. Frontiers in Neuroscience, 2016, 10, 242.	2.8	13
154	5-HT1B receptor knockout mice show no adaptive changes in 5-HT1A receptor function as measured telemetrically on body temperature and heart rate responses. Brain Research Bulletin, 2002, 57, 93-102.	3.0	12
155	Functional Interrogation of a Depression-Related Serotonergic Single Nucleotide Polymorphism, rs6295, Using a Humanized Mouse Model. ACS Chemical Neuroscience, 2019, 10, 3197-3206.	3.5	12
156	Mu opioid receptors on hippocampal GABAergic interneurons are critical for the antidepressant effects of tianeptine. Neuropsychopharmacology, 2022, 47, 1387-1397.	5.4	12
157	Optogenetic activation of granule cells in the dorsal dentate gyrus enhances dopaminergic neurotransmission in the Nucleus Accumbens. Neuroscience Research, 2018, 134, 56-60.	1.9	11
158	Regulation of hippocampal memory traces by neurogenesis. Neurogenesis (Austin, Tex), 2015, 2, e 1025180 .	1.5	7
159	Contribution of the Opioid System to the Antidepressant Effects of Fluoxetine. Biological Psychiatry, 2022, 92, 952-963.	1.3	7
160	Delineating a serotonin $1B$ receptor circuit for appetite suppression in mice. Journal of Experimental Medicine, $2022,219,.$	8.5	5
161	Cover Image, Volume 28, Issue 7. Hippocampus, 2018, 28, C1.	1.9	0