Robert J Young

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6110437/publications.pdf

Version: 2024-02-01

257450 175258 2,799 57 24 52 h-index citations g-index papers 62 62 62 3937 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Physicochemical properties and Mycobacterium tuberculosis transporters: keys to efficacious antitubercular drugs?. RSC Medicinal Chemistry, 2021, 12, 43-56.	3.9	19
2	Revisiting the Language of Glycoscience: Readers, Writers and Erasers in Carbohydrate Biochemistry. ChemBioChem, 2020, 21, 423-427.	2.6	24
3	<i>Mycobacterium tuberculosis</i> Decaprenylphosphoryl-β- <scp>d</scp> -ribose Oxidase Inhibitors: Expeditious Reconstruction of Suboptimal Hits into a Series with Potent in Vivo Activity. Journal of Medicinal Chemistry, 2020, 63, 2557-2576.	6.4	22
4	Method Development and Application of an Accelerated Solution Stability Screen for Drug Discovery. SLAS Discovery, 2020, 25, 1191-1196.	2.7	5
5	Targeting the Regulatory Site of ER Aminopeptidase 1 Leads to the Discovery of a Natural Product Modulator of Antigen Presentation. Journal of Medicinal Chemistry, 2020, 63, 3348-3358.	6.4	25
6	Facts, Patterns, and Principles in Drug Discovery: Appraising the Rule of 5 with Measured Physicochemical Data. Journal of Medicinal Chemistry, 2020, 63, 10091-10108.	6.4	62
7	Identification of 2-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)amino)-N-phenylpropanamides as a novel class of potent DprE1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127192.	2.2	7
8	Identification via a Parallel Hit Progression Strategy of Improved Small Molecule Inhibitors of the Malaria Purine Uptake Transporter that InhibitPlasmodium falciparumParasite Proliferation. ACS Infectious Diseases, 2019, 5, 1738-1753.	3.8	6
9	Using Physicochemical Measurements to Influence Better Compound Design. SLAS Discovery, 2019, 24, 791-801.	2.7	24
10	Identification and Optimization of Novel Small c-Abl Kinase Activators Using Fragment and HTS Methodologies. Journal of Medicinal Chemistry, 2019, 62, 2154-2171.	6.4	21
11	Kallikrein 5 inhibitors identified through structure based drug design in search for a treatment for Netherton Syndrome. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 821-825.	2.2	9
12	Structure guided drug design to develop kallikrein 5 inhibitors to treat Netherton syndrome. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1454-1458.	2.2	9
13	The Mechanism of Acetyl Transfer Catalyzed by <i>Mycobacterium tuberculosis</i> GlmU. Biochemistry, 2018, 57, 3387-3401.	2.5	11
14	Mapping the Efficiency and Physicochemical Trajectories of Successful Optimizations. Journal of Medicinal Chemistry, 2018, 61, 6421-6467.	6.4	79
15	Expanding the medicinal chemistry synthetic toolbox. Nature Reviews Drug Discovery, 2018, 17, 709-727.	46.4	391
16	The role and impact of high throughput biomimetic measurements in drug discovery. ADMET and DMPK, 2018, 6, 74-84.	2.1	19
17	Application of Biocatalysis to onâ€DNA Carbohydrate Library Synthesis. ChemBioChem, 2017, 18, 858-863.	2.6	60
18	A new â€~golden age' for the antitubercular target InhA. Drug Discovery Today, 2017, 22, 492-502.	6.4	46

#	Article	IF	CITATIONS
19	New reactions and reactive intermediates in the pyrolysis of cyclic phosphonium ylides. Arkivoc, 2017, 2017, 293-301.	0.5	0
20	<i>N</i> â€Benzylâ€4â€((heteroaryl)methyl)benzamides: A New Class of Direct NADHâ€Dependent 2â€ <i>trans Enoylâ€"Acyl Carrier Protein Reductase (InhA) Inhibitors with Antitubercular Activity. ChemMedChem, 2016, 11, 687-701.</i>	/i> 3.2	28
21	PrÃ⊠se Lipophilie(log <i>P</i>)â€Messungen geben Auskunft über feine stereoelektronische Effekte in der Fluorchemie. Angewandte Chemie, 2016, 128, 3922-3924.	2.0	3
22	Accurate Lipophilicity (log <i>P</i>) Measurements Inform on Subtle Stereoelectronic Effects in Fluorine Chemistry. Angewandte Chemie - International Edition, 2016, 55, 3858-3860.	13.8	23
23	Chemoselective Sequential Click Ligations Directed by Enhanced Reactivity of an Aromatic Ynamine. Organic Letters, 2016, 18, 1694-1697.	4.6	25
24	New direct inhibitors of InhA with antimycobacterial activity based on a tetrahydropyran scaffold. European Journal of Medicinal Chemistry, 2016, 112, 252-257.	5.5	20
25	Structurally Diverse Mitochondrial Branched Chain Aminotransferase (BCATm) Leads with Varying Binding Modes Identified by Fragment Screening. Journal of Medicinal Chemistry, 2016, 59, 2452-2467.	6.4	23
26	Molecular Property Design: Does Everyone Get It?. ACS Medicinal Chemistry Letters, 2015, 6, 722-725.	2.8	106
27	The Discovery of in Vivo Active Mitochondrial Branched-Chain Aminotransferase (BCATm) Inhibitors by Hybridizing Fragment and HTS Hits. Journal of Medicinal Chemistry, 2015, 58, 7140-7163.	6.4	29
28	Whole Cell Target Engagement Identifies Novel Inhibitors of <i>Mycobacterium tuberculosis</i> Decaprenylphosphoryl-β- <scp>d</scp> -ribose Oxidase. ACS Infectious Diseases, 2015, 1, 615-626.	3.8	51
29	Design, Synthesis, and Evaluation of New Thiadiazole-Based Direct Inhibitors of Enoyl Acyl Carrier Protein Reductase (InhA) for the Treatment of Tuberculosis. Journal of Medicinal Chemistry, 2015, 58, 613-624.	6.4	58
30	Structure-guided optimization of small molecule c-Abl activators. Journal of Computer-Aided Molecular Design, 2014, 28, 75-87.	2.9	4
31	Physical Properties in Drug Design. Topics in Medicinal Chemistry, 2014, , 1-68.	0.8	13
32	Practical purification of hydrophilic fragments and lead/drug-like molecules by reverse phase flash chromatography: tips, tricks and contemporary developments. Drug Discovery Today, 2013, 18, 148-154.	6.4	10
33	The impact of aromatic ring count on compound developability: further insights by examining carboand hetero-aromatic and -aliphatic ring types. Drug Discovery Today, 2011, 16, 164-171.	6.4	333
34	Getting physical in drug discovery II: the impact of chromatographic hydrophobicity measurements and aromaticity. Drug Discovery Today, 2011, 16, 822-830.	6.4	257
35	The successful quest for oral factor Xa inhibitors; learnings for all of medicinal chemistry?. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6228-6235.	2.2	17
36	The discovery of potent and long-acting oral factor Xa inhibitors with tetrahydroisoquinoline and benzazepine P4 motifs. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1588-1592.	2,2	12

#	Article	IF	CITATIONS
37	Structure and property based design of factor Xa inhibitors: Pyrrolidin-2-ones with aminoindane and phenylpyrrolidine P4 motifs. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1582-1587.	2.2	9
38	Heteroalicyclic carboxamidines as inhibitors of inducible nitric oxide synthase; the identification of (2R)-2-pyrrolidinecarboxamidine as a potent and selective haem-co-ordinating inhibitor. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3037-3040.	2.2	4
39	Getting physical in drug discovery: a contemporary perspective on solubility and hydrophobicity. Drug Discovery Today, 2010, 15, 648-655.	6.4	219
40	Structure and property based design of factor Xa inhibitors: pyrrolidin-2-ones with monoaryl P4 motifs. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 618-622.	2.2	12
41	Structure and property based design of factor Xa inhibitors: Biaryl pyrrolidin-2-ones incorporating basic heterocyclic motifs. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 28-33.	2.2	23
42	Structure and property based design of factor Xa inhibitors: Pyrrolidin-2-ones with biaryl P4 motifs. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 23-27.	2.2	26
43	Factor Xa Inhibitors:Â S1 Binding Interactions of a Series ofN-{(3S)-1-[(1S)-1-Methyl-2-morpholin-4-yl-2-oxoethyl]-2-oxopyrrolidin-3-yl}sulfonamidesâ€. Journal of Medicinal Chemistry, 2007, 50, 1546-1557.	6.4	48
44	Sulfonamide-related conformational effects and their importance in structure-based design. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2931-2934.	2.2	31
45	Selective and dual action orally active inhibitors of thrombin and factor Xa. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2927-2930.	2.2	22
46	New thiopyrazolo[3,4-d]pyrimidine derivatives as anti-mycobacterial agents. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1736-1740.	2.2	101
47	Design and synthesis of orally active pyrrolidin-2-one-based factor Xa inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3784-3788.	2.2	30
48	Structure- and property-based design of factor Xa inhibitors: Pyrrolidin-2-ones with acyclic alanyl amides as P4 motifs. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5953-5957.	2.2	40
49	New Small-Molecule Synthetic Antimycobacterials. Antimicrobial Agents and Chemotherapy, 2005, 49, 2153-2163.	3.2	159
50	Preparation of heterocyclic phosphorus ylides containing the tetramic acid ring system and seven-membered ring vinylogues. Tetrahedron Letters, 2001, 42, 141-143.	1.4	15
51	Inhibition of inducible nitric oxide synthase by acetamidine derivatives of hetero-substituted lysine and homolysine. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 597-600.	2.2	71
52	Synthesis of Amino Acid Derived Cyclic Phosphorus Ylides. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 147, 245-245.	1.6	0
53	Acyl carbamate directing groups in nucleoside synthesis: Applications in the synthesis of $2\hat{a}\in^2$ -deoxy-5-ethyl- $4\hat{a}\in^2$ -thiouridine. Tetrahedron Letters, 1996, 37, 1867-1870.	1.4	17
54	Synthesis and biological evaluation of the L-enantiomer of 2′-deoxy-5-ethyl-4′-thiouridine. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 991-994.	2.2	24

ROBERT J YOUNG

#	Article	IF	CITATIONS
55	Synthesis and antiviral evaluation of enantiomeric $2\hat{a}\in^2$, $3\hat{a}\in^2$ -dideoxy- and $2\hat{a}\in^2$, $3\hat{a}\in^2$ -didehydro- $2\hat{a}\in^2$, $3\hat{a}\in^2$ -dideoxy- $4\hat{a}\in^2$ -thionucleosides. Bioorganic and Medicinal Chemistry Letters, 1995 2599-2604.	, 5 ,2	49
56	β-Anomer selectivity in 2′-deoxynucleoside synthesis: A novel approach using an acyl carbamate directing group. Tetrahedron Letters, 1994, 35, 8687-8690.	1.4	26
57	Syntheses of methylene-bridged benzopyrenes, carcinogenic components of automobile exhaust residue. Tetrahedron Letters, 1989, 30, 6603-6606.	1.4	10