Manijeh Razeghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6110255/publications.pdf

Version: 2024-02-01

347 papers 15,505 citations

67 h-index 33145 104 g-index

355 all docs

355 docs citations

355 times ranked 8278 citing authors

#	Article	IF	CITATIONS
1	High Power Mid-Infrared Quantum Cascade Lasers Grown on GaAs. Photonics, 2022, 9, 231.	0.9	8
2	Low Dark Current Deep UV AlGaN Photodetectors on AlN Substrate. IEEE Journal of Quantum Electronics, 2022, 58, 1-5.	1.0	7
3	Resonant cavity enhanced heterojunction phototransistors based on type-II superlattices. Infrared Physics and Technology, 2021, 113, 103552.	1.3	5
4	Multi-band SWIR-MWIR-LWIR Type-II superlattice based infrared photodetector. Results in Optics, 2021, 2, 100054.	0.9	18
5	Study of Phase Transition in MOCVD Grown Ga2O3 from \hat{l}^2 to \hat{l}^2 Phase by Ex Situ and In Situ Annealing. Photonics, 2021, 8, 17.	0.9	18
6	High Power, Widely Tunable, and Beam Steerable Mid-infrared Quantum Cascade Lasers. NATO Science for Peace and Security Series B: Physics and Biophysics, 2021, , 21-34.	0.2	0
7	Highly Conductive Co-Doped Ga2O3:Si-In Grown by MOCVD. Coatings, 2021, 11, 287.	1.2	7
8	Performance analysis of infrared heterojunction phototransistors based on Type-II superlattices. Infrared Physics and Technology, 2021, 113, 103641.	1.3	3
9	Mid-wavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice. Scientific Reports, 2021, 11, 7104.	1.6	16
10	Low Noise Short Wavelength Infrared Avalanche Photodetector Using SB-Based Strained Layer Superlattice. Photonics, 2021, 8, 148.	0.9	3
11	Geiger-Mode Operation of AlGaN Avalanche Photodiodes at 255 nm. IEEE Journal of Quantum Electronics, 2021, 57, 1-6.	1.0	11
12	Harmonic injection locking of high-power mid-infrared quantum cascade lasers. Photonics Research, 2021, 9, 1078.	3.4	8
13	High-brightness LWIR quantum cascade lasers. Optics Letters, 2021, 46, 5193.	1.7	6
14	Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice. Light: Science and Applications, 2021, 10, 17.	7.7	30
15	Microstrip Array Ring FETs with 2D p-Ga2O3 Channels Grown by MOCVD. Photonics, 2021, 8, 578.	0.9	4
16	In As/GaSb type II superlattices: A developing material system for third generation of IR imaging. , 2020, , 379-413.		10
17	Demonstration of Planar Type-II Superlattice-Based Photodetectors Using Silicon Ion-Implantation. Photonics, 2020, 7, 68.	0.9	7
18	Room temperature quantum cascade laser with $\hat{a}^4/431\%$ wall-plug efficiency. AIP Advances, 2020, 10, .	0.6	17

#	Article	IF	CITATIONS
19	High performance InAs/InAsSb Type-II superlattice mid-wavelength infrared photodetectors with double barrier. Infrared Physics and Technology, 2020, 109, 103439.	1.3	15
20	Avalanche Photodetector Based on InAs/InSb Superlattice. Quantum Reports, 2020, 2, 591-599.	0.6	15
21	Type-II superlattice-based heterojunction phototransistors for high speed applications. Infrared Physics and Technology, 2020, 108, 103350.	1.3	9
22	Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation. Applied Physics Letters, 2020, 116, .	1.5	15
23	Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice. AIP Advances, 2020, 10, .	0.6	38
24	High performance Zn-diffused planar mid-wavelength infrared type-II InAs/InAs1â^2xSbx superlattice photodetector by MOCVD. Applied Physics Letters, 2020, 116, .	1.5	17
25	Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation. AIP Advances, 2020, 10 , .	0.6	13
26	High-speed short wavelength infrared heterojunction phototransistors based on type II superlattices. , 2020, , .		2
27	Sb-based third generation at Center for Quantum Devices. , 2020, , .		1
28	High power continuous wave operation of single mode quantum cascade lasers up to 5 W spanning λâ^1⁄43.8-8.3 µm. Optics Express, 2020, 28, 15181.	1.7	13
29	Room temperature quantum cascade lasers with 22% wall plug efficiency in continuous-wave operation. Optics Express, 2020, 28, 17532.	1.7	23
30	Demonstration of mid-wavelength infrared nBn photodetectors based on type-II InAs/InAs1-xSbx superlattice grown by metal-organic chemical vapor deposition. Applied Physics Letters, 2019, 115, .	1.5	16
31	MOCVD grown $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Ga $\langle sub \rangle 2 \langle sub \rangle 0 \langle sub \rangle 3 \langle sub \rangle$ metal-oxide-semiconductor field effect transistors on sapphire. Applied Physics Express, 2019, 12, 095503.	1.1	19
32	High speed antimony-based superlattice photodetectors transferred on sapphire. Applied Physics Express, 2019, 12, 116502.	1.1	8
33	Surface Emitting, Tunable, Mid-Infrared Laser with High Output Power and Stable Output Beam. Scientific Reports, 2019, 9, 549.	1.6	10
34	Extended short wavelength infrared heterojunction phototransistors based on type II superlattices. Applied Physics Letters, 2019, 114, 191109.	1.5	15
35	Ga ₂ O ₃ metal-oxide-semiconductor field effect transistors on sapphire substrate by MOCVD. Semiconductor Science and Technology, 2019, 34, 08LT01.	1.0	27
36	Room temperature terahertz semiconductor frequency comb. Nature Communications, 2019, 10, 2403.	5.8	50

3

#	Article	IF	CITATIONS
37	AlGaN/AlN MOVPE heteroepitaxy: pulsed co-doping SiH ₄ and TMIn. Semiconductor Science and Technology, 2019, 34, 075028.	1.0	8
38	Investigation of surface leakage reduction for small pitch shortwave infrared photodetectors. Semiconductor Science and Technology, 2019, 34, 06LT01.	1.0	4
39	Type–Il superlattices base visible/extended short–wavelength infrared photodetectors with a bandstructure–engineered photo–generated carrier extractor. Scientific Reports, 2019, 9, 5003.	1.6	20
40	Fabrication of $12 < i > \hat{A}\mu < / i > m$ pixel-pitch $1280~\hat{A}-1024$ extended short wavelength infrared focal plane array using heterojunction type-II superlattice-based photodetectors. Semiconductor Science and Technology, $2019, 34, 03LT01$.	1.0	12
41	Suppressing Spectral Crosstalk in Dual-Band Long- Wavelength Infrared Photodetectors With Monolithically Integrated Air-Gapped Distributed Bragg Reflectors. IEEE Journal of Quantum Electronics, 2019, 55, 1-6.	1.0	13
42	High quantum efficiency mid-wavelength infrared type-II InAs/InAs1â^'xSbx superlattice photodiodes grown by metal-organic chemical vapor deposition. Applied Physics Letters, 2019, 114, .	1.5	22
43	Strain-Induced Metastable Phase Stabilization in Ga ₂ O ₃ Thin Films. ACS Applied Materials & Discourse (1988) and Discourse (1988) amp; Interfaces, 2019, 11, 5536-5543.	4.0	42
44	High brightness ultraviolet light-emitting diodes grown on patterned silicon substrate. Materials Science in Semiconductor Processing, 2019, 90, 87-91.	1.9	15
45	Antimonite-based gap-engineered type-II superlattice materials grown by MBE and MOCVD for the third generation of infrared imagers. , 2019, , .		5
46	High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 µm. Optics Express, 2019, 27, 15776.	1.7	36
47	(Invited) MOCVD-Grown Ga ₂ O ₃ Field Effect Transistors on Sapphire. ECS Meeting Abstracts, 2019, MA2019-02, 1356-1356.	0.0	1
48	New design strategies for multifunctional and inexpensive quantum cascade lasers., 2019,,.		0
49	Room temperature THz frequency comb based on QCL. , 2019, , .		0
50	Thin-Film Antimonide-Based Photodetectors Integrated on Si. IEEE Journal of Quantum Electronics, 2018, 54, 1-7.	1.0	10
51	Shortwave quantum cascade laser frequency comb for multi-heterodyne spectroscopy. Applied Physics Letters, 2018, 112, 141104.	1.5	32
52	Sandwich method to grow high quality AlN by MOCVD. Journal Physics D: Applied Physics, 2018, 51, 085104.	1.3	32
53	Phase-locked, high power, mid-infrared quantum cascade laser arrays. Applied Physics Letters, 2018, 112,	1.5	18
54	Room temperature operation of InxGa1â^'xSb/InAs type-II quantum well infrared photodetectors grown by MOCVD. Applied Physics Letters, 2018, 112, .	1.5	21

#	Article	IF	Citations
55	Breaking Spectral and Performance Barriers for Diode Lasers with Material Innovation. , 2018, , .		O
56	Single-mode, high-power, mid-infrared, quantum cascade laser phased arrays. Scientific Reports, 2018, 8, 14866.	1.6	15
57	High Frequency Extended Short-Wavelength Infrared Heterojunction Photodetectors Based on InAs/GaSb/AlSb Type-II Superlattices. IEEE Journal of Quantum Electronics, 2018, 54, 1-5.	1.0	6
58	Demonstration of long wavelength infrared type-II InAs/InAs1-xSbx superlattices photodiodes on GaSb substrate grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2018, 112, .	1.5	20
59	nBn extended short-wavelength infrared focal plane array. Optics Letters, 2018, 43, 591.	1.7	36
60	Type-II InAs/GaSb/AlSb superlattice-based heterojunction phototransistors: back to the future. , 2018, , .		3
61	Review of high power frequency comb sources based on InP: from MIR to THz at CQD., 2018,,.		2
62	Impact of scaling base thickness on the performance of heterojunction phototransistors. Nanotechnology, 2017, 28, 10LT01.	1.3	21
63	A lifetime of contributions to the world of semiconductors using the Czochralski invention. Vacuum, 2017, 146, 308-328.	1.6	2
64	Background–limited long wavelength infrared InAs/InAs1â^' xSbx type-II superlattice-based photodetectors operating at 110 K. APL Materials, 2017, 5, .	2.2	33
65	High efficiency quantum cascade laser frequency comb. Scientific Reports, 2017, 7, 43806.	1.6	25
66	Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier. Applied Physics Letters, 2017, 110, .	1.5	50
67	Recent advances in InAs/InAs _{1-x} Sb _x /AlAs _{1-x} Sb _x gap-engineered type-II superlattice-based photodetectors. Proceedings of SPIE, 2017, , .	0.8	10
68	Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output. AIP Advances, 2017, 7, .	0.6	15
69	Bias–selectable nBn dual–band long–/very long–wavelength infrared photodetectors based on InAs/InAs1â^`xSbx/AlAs1â^`xSbx type–ll superlattices. Scientific Reports, 2017, 7, 3379.	1.6	60
70	Preface to Special Topic: Emerging materials for photonics. APL Materials, 2017, 5, 035101.	2.2	0
71	Study of Au coated ZnO nanoarrays for surface enhanced Raman scattering chemical sensing. Journal of Materials Chemistry C, 2017, 5, 3528-3535.	2.7	47
72	Dark current reduction in microjunction-based double electron barrier type-II InAs/InAsSb superlattice long-wavelength infrared photodetectors. Scientific Reports, 2017, 7, 12617.	1.6	17

#	Article	IF	Citations
73	Monolithic beam steering in a mid-infrared, surface-emitting, photonic integrated circuit. Scientific Reports, 2017, 7, 8472.	1.6	8
74	Direct growth of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600363.	0.8	14
75	Bias-selectable three-color short-, extended-short-, and mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices. Optics Letters, 2017, 42, 4275.	1.7	13
76	High performance monolithic, broadly tunable mid-infrared quantum cascade lasers. Optica, 2017, 4, 1228.	4.8	28
77	Type-II superlattice-based extended short-wavelength infrared focal plane array with an AlAsSb/GaSb superlattice etch-stop layer to allow near-visible light detection. Optics Letters, 2017, 42, 4299.	1.7	18
78	Recent progress of quantum cascade laser research from 3 to 12  μm at the Center for Quantum Devic [Invited]. Applied Optics, 2017, 56, H30.	es 0.9	53
79	Progress in monolithic, broadband, widely tunable midinfrared quantum cascade lasers. Optical Engineering, 2017, 57, 1.	0.5	4
80	Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers. Scientific Reports, 2016, 6, 23595.	1.6	86
81	Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices. Applied Physics Letters, 2016, 109, .	1.5	25
82	Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design. Scientific Reports, 2016, 6, 25213.	1.6	38
83	High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices. Scientific Reports, 2016, 6, 24144.	1.6	86
84	High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier. Applied Physics Letters, 2015, 107, .	1.5	19
85	High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1â^'xSbx superlattices. Applied Physics Letters, 2015, 107, 141104.	1.5	39
86	High power frequency comb based on mid-infrared quantum cascade laser at λ â^¼â€‰9 <i>μ</i> m. /Letters, 2015, 106, .	Applied Ph	ıyşics
87	Bias-selectable dual-band mid-/long-wavelength infrared photodetectors based on InAs/InAs1â^'xSbx type-Il superlattices. Applied Physics Letters, 2015, 106, .	1.5	75
88	High brightness angled cavity quantum cascade lasers. Applied Physics Letters, 2015, 106, .	1.5	52
89	Quantum cascade lasers: from tool to product. Optics Express, 2015, 23, 8462.	1.7	168
90	Ultra-broadband quantum cascade laser, tunable over 760 cm^â^'1, with balanced gain. Optics Express, 2015, 23, 21159.	1.7	42

#	Article	IF	Citations
91	Superlattice-based quantum devices: from theory to practical applications. Waves in Random and Complex Media, 2014, 24, 240-249.	1.6	0
92	Widely tunable room temperature semiconductor terahertz source. Applied Physics Letters, 2014, 105, .	1.5	67
93	Generation-recombination and trap-assisted tunneling in long wavelength infrared minority electron unipolar photodetectors based on InAs/GaSb superlattice. Applied Physics Letters, 2014, 104, 053508.	1.5	28
94	Continuous operation of a monolithic semiconductor terahertz source at room temperature. Applied Physics Letters, 2014, 104, .	1.5	80
95	Advances in mid-infrared detection and imaging: a key issues review. Reports on Progress in Physics, 2014, 77, 082401.	8.1	114
96	InAs/InAs1â^'xSbx type-II superlattices for high performance long wavelength infrared detection. Applied Physics Letters, 2014, 105, .	1.5	98
97	High Performance Solar-Blind Ultraviolet <inline-formula> <tex-math notation="TeX">(320 imes 256) </tex-math></inline-formula> Focal Plane Arrays Based on Al _{<italic></italic>} N. IEEE Journal of Quantum Electronics, 2014, 50, 593-597.	1.0	8
98	Measurements of carbon monoxide mixing ratios in Houston using a compact high-power CW DFB-QCL-based QEPAS sensor. Applied Physics B: Lasers and Optics, 2014, 117, 519-526.	1.1	7
99	Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems. Journal of Electronic Materials, 2014, 43, 2802-2807.	1.0	30
100	High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection. Applied Physics Letters, 2014, 104, .	1.5	64
101	Investigation of impurities in type-II InAs/GaSb superlattices via capacitance-voltage measurement. Applied Physics Letters, 2013, 103, .	1.5	15
102	Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111). Applied Physics Letters, 2013, 102, 211110.	1.5	72
103	Demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices. Applied Physics Letters, 2013, 102, 011108.	1.5	51
104	Al _x Ga _{1-x} N-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89%. Applied Physics Letters, 2013, 103, 191108.	1.5	143
105	Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si(111). Applied Physics Letters, 2013, 102, 011106.	1.5	50
106	Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices. Infrared Physics and Technology, 2013, 59, 41-52.	1.3	57
107	Crack-free AlGaN for solar-blind focal plane arrays through reduced area epitaxy. Applied Physics Letters, 2013, 102, .	1.5	33
108	Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting. Applied Physics Letters, 2013, 103, 011101.	1.5	45

#	Article	IF	Citations
109	Al _x Ga _{1â^'x} N-based solar-blind ultraviolet photodetector based on lateral epitaxial overgrowth of AlN on Si substrate. Applied Physics Letters, 2013, 103, 181113.	1.5	41
110	Active and passive infrared imager based on short-wave and mid-wave type-II superlattice dual-band detectors. Optics Letters, 2013, 38, 22.	1.7	25
111	Extended electrical tuning of quantum cascade lasers with digital concatenated gratings. Applied Physics Letters, 2013, 103, .	1.5	38
112	High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation. Optics Express, 2013, 21, 968.	1.7	37
113	World's first demonstration of type-II superlattice dual band 640x512 LWIR focal plane array. Proceedings of SPIE, 2012, , .	0.8	12
114	Al_xGa_1â^'xN–based deep-ultraviolet 320×256 focal plane array. Optics Letters, 2012, 37, 896.	1.7	38
115	Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation. Applied Physics Letters, 2012, 101, .	1.5	56
116	Surface leakage investigation via gated type-II InAs/GaSb long-wavelength infrared photodetectors. Applied Physics Letters, 2012, 101, .	1.5	24
117	High power, continuous wave, room temperature operation of λ â^¼â€‰3.4 μm and λ â^⅓ acascade lasers. Applied Physics Letters, 2012, 100, .	.3,55â€% 1.5	ລÎ⅓m InP-bas
118	Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices. Optics Letters, 2012, 37, 4744.	1.7	36
119	Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature. Applied Physics Letters, 2012, 100, .	1.5	67
120	Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices. Applied Physics Letters, 2012, 100, .	1.5	95
121	Room temperature continuous wave operation of λ â^¼ 3–3.2 μm quantum cascade la Physics Letters, 2012, 101, .	asers. App	lied 98
122	Thermal Conductivity of InAs/GaSb TypeÂll Superlattice. Journal of Electronic Materials, 2012, 41, 2322-2325.	1.0	8
123	High Operability 1024\$,imes,\$1024 Long Wavelength Type-II Superlattice Focal Plane Array. IEEE Journal of Quantum Electronics, 2012, 48, 221-228.	1.0	30
124	Stable single mode terahertz semiconductor sources at room temperature. , 2011, , .		0
125	Surface leakage current reduction in long wavelength infrared type-II $\ln As/GaSb$ superlattice photodiodes. Applied Physics Letters, $2011, 98, .$	1.5	24
126	Elimination of surface leakage in gate controlled type-II InAs/GaSb mid-infrared photodetectors. Applied Physics Letters, 2011, 99, .	1.5	34

#	Article	IF	CITATIONS
127	High performance dual-band long-wave infrared focal plane array based on type-II InAs/GaSb superlattices., 2011,,.		O
128	High Operability 1024×1024 Long Wavelength Infrared Focal Plane Array Base on Type-II InAsâ^•GaSb Superlattice. AIP Conference Proceedings, 2011, , .	0.3	7
129	Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers. Applied Physics Letters, 2011, 99, .	1.5	82
130	Room temperature quantum cascade lasers with 27% wall plug efficiency. Applied Physics Letters, 2011, 98, .	1.5	289
131	$2.4\mathrm{W}$ room temperature continuous wave operation of distributed feedback quantum cascade lasers. Applied Physics Letters, 2011, 98, .	1.5	103
132	High operating temperature midwave infrared photodiodes and focal plane arrays based on type-II InAs/GaSb superlattices. Applied Physics Letters, 2011, 98, 143501.	1.5	102
133	Type-II superlattice dual-band LWIR imager with M-barrier and Fabry–Perot resonance. Optics Letters, 2011, 36, 2560.	1.7	38
134	Growth and Characterization of Long-Wavelength Infrared Type-II Superlattice Photodiodes on a 3-in GaSb Wafer. IEEE Journal of Quantum Electronics, 2011, 47, 686-690.	1.0	61
135	Type-II InAs/GaSb photodiodes and focal plane arrays aimed at high operating temperatures. Opto-electronics Review, $2011, 19, .$	2.4	35
136	Recent advances in IR semiconductor laser diodes and future trends. , 2011, , .		0
137	High power, continuous wave, quantum cascade ring laser. Applied Physics Letters, 2011, 99, .	1.5	51
138	Deep ultraviolet (254 nm) focal plane array. Proceedings of SPIE, 2011, , .	0.8	4
139	Widely tunable single-mode high power quantum cascade lasers. , 2011, , .		7
140	High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices. Applied Physics Letters, 2010, 97, .	1.5	70
141	Technology of Quantum Devices. , 2010, , .		59
142	Photovoltaic MWIR Type-II Superlattice Focal Plane Array on GaAs Substrate. IEEE Journal of Quantum Electronics, 2010, 46, 1704-1708.	1.0	23
143	Band gap tunability of Type II Antimonide-based superlattices. Physics Procedia, 2010, 3, 1207-1212.	1.2	31
144	Quantum cascade lasers that emit more light than heat. Nature Photonics, 2010, 4, 99-102.	15.6	131

#	Article	IF	CITATIONS
145	Highly temperature insensitive quantum cascade lasers. Applied Physics Letters, 2010, 97, .	1.5	85
146	On the interface properties of ZnO/Si electroluminescent diodes. Journal of Applied Physics, 2010, 107, 033719.	1.1	14
147	GaN avalanche photodiodes grown on m-plane freestanding GaN substrate. Applied Physics Letters, 2010, 96, .	1.5	36
148	Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λâ^¼3.76â€,μm. Applied Physics Letters, 2010, 97, .	1.5	59
149	Demonstration of negative differential resistance in GaN/AlN resonant tunneling diodes at room temperature. Journal of Applied Physics, 2010, 107, .	1.1	34
150	Room temperature negative differential resistance characteristics of polar III-nitride resonant tunneling diodes. Applied Physics Letters, 2010, 97, .	1.5	46
151	AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition. Applied Physics Letters, 2010, 96, .	1.5	84
152	Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λâ^1/44.36â€,Î1/4m. Applied Physics Letters, 2010, 97, .	1.5	45
153	Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates. Applied Physics Letters, 2010, 96, .	1.5	49
154	Reliability in room-temperature negative differential resistance characteristics of low-aluminum content AlGaN/GaN double-barrier resonant tunneling diodes. Applied Physics Letters, 2010, 97, .	1.5	70
155	III-Nitride Optoelectronic Devices: From ultraviolet detectors and visible emitters towards terahertz intersubband devices. , 2010, , .		1
156	Tunability of intersubband absorption from 4.5 to $5.3\hat{a}\in \hat{h}/4$ m in a GaN/Al0.2Ga0.8N superlattices grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2009, 95, 131109.	1.5	20
157	Demonstration of midinfrared type-II InAs/GaSb superlattice photodiodes grown on GaAs substrate. Applied Physics Letters, 2009, 94, .	1.5	55
158	Minority electron unipolar photodetectors based on type II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection. Applied Physics Letters, 2009, 95, .	1.5	85
159	Fabrication and characterization of novel hybrid green light emitting diodes based on substituting n-type ZnO for n-type GaN in an inverted p-n junction. Journal of Vacuum Science & Technology B, 2009, 27, 1784.	1.3	11
160	High-Performance InP-Based Mid-IR Quantum Cascade Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 941-951.	1.9	135
161	Stranski–Krastanov growth of InGaN quantum dots emitting inÂgreenÂspectra. Applied Physics A: Materials Science and Processing, 2009, 96, 403-408.	1.1	34
162	Comprehensive study of blue and green multi-quantum-well light-emitting diodes grown onÂconventional andÂlateral epitaxial overgrowthÂGaN. Applied Physics B: Lasers and Optics, 2009, 95, 307-314.	1.1	16

#	Article	IF	CITATIONS
163	Thermal analysis of buried heterostructure quantum cascade lasers for longâ€wavelength infrared emission using 2D anisotropic heatâ€dissipation model. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 356-362.	0.8	12
164	Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes. Applied Physics Letters, 2009, 94, 053506.	1.5	55
165	Pulsed metal-organic chemical vapor deposition of high-quality AlN/GaN superlattices for near-infrared intersubband transitions. Applied Physics Letters, 2009, 94, 121902.	1.5	27
166	Recent performance records for mid-IR quantum cascade lasers. , 2009, , .		0
167	Background Limited Performance of Long Wavelength Infrared Focal Plane Arrays Fabricated From M-Structure InAs–GaSb Superlattices. IEEE Journal of Quantum Electronics, 2009, 45, 157-162.	1.0	64
168	Quantum dot in a well infrared photodetectors for high operating temperature focal plane arrays. , 2009, , .		2
169	High-performance, continuous-wave quantum-cascade lasers operating up to 85°C at λâ^¼8.8Âμm. Applied Physics A: Materials Science and Processing, 2008, 93, 405-408.	1.1	20
170	Investigations of ZnO thin films grown on câ€Al ₂ O ₃ by pulsed laser deposition in N ₂ + O ₂ ambient. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3084-3087.	0.8	14
171	InP-Based Quantum-Dot Infrared Photodetectors With High Quantum Efficiency and High-Temperature Imaging. IEEE Sensors Journal, 2008, 8, 936-941.	2.4	9
172	Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110 K. Applied Physics Letters, 2008, 93, 123502.	1.5	87
173	High-Performance Focal Plane Array Based on InAs–GaSb Superlattices With a 10-\$mu{hbox {m}}\$ Cutoff Wavelength. IEEE Journal of Quantum Electronics, 2008, 44, 462-467.	1.0	29
174	High-Performance Continuous-Wave Operation of \$lambda sim {hbox {4.6}}~mu{hbox {m}}\$ Quantum-Cascade Lasers Above Room Temperature. IEEE Journal of Quantum Electronics, 2008, 44, 747-754.	1.0	34
175	Electrically Pumped Photonic Crystal Distributed Feedback Quantum Cascade Lasers. Materials Research Society Symposia Proceedings, 2008, 1076, 1.	0.1	0
176	Overview of quantum cascade laser research at the Center for Quantum Devices., 2008,,.		5
177	III-nitride photon counting avalanche photodiodes. , 2008, , .		1
178	New frontiers in InP based quantum devices. , 2008, , .		0
179	Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes. Applied Physics Letters, 2008, 93, .	1.5	70
180	A hybrid green light-emitting diode comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN. Applied Physics Letters, 2008, 93, .	1.5	57

#	Article	IF	Citations
181	Back-illuminated separate absorption and multiplication GaN avalanche photodiodes. Applied Physics Letters, 2008, 92, 101120.	1.5	64
182	The effect of doping the M-barrier in very long-wave type-II InAsâ^•GaSb heterodiodes. Applied Physics Letters, 2008, 93, .	1.5	31
183	High quantum efficiency back-illuminated GaN avalanche photodiodes. Applied Physics Letters, 2008, 93,	1.5	15
184	High quantum efficiency two color type-II InAsâ^•GaSbâ€^n-i-p-p-i-n photodiodes. Applied Physics Letters, 2008, 92, .	1.5	37
185	Techniques for high quality SiO 2 films. , 2007, , .		4
186	Passivation of type-II InAsâ^•GaSb double heterostructure. Applied Physics Letters, 2007, 91, .	1.5	72
187	Substrate removal for high quantum efficiency back side illuminated type-II InAsâ^•GaSb photodetectors. Applied Physics Letters, 2007, 91, .	1.5	30
188	Geiger-mode operation of back-illuminated GaN avalanche photodiodes. Applied Physics Letters, 2007, 91, .	1.5	40
189	Hole-initiated multiplication in back-illuminated GaN avalanche photodiodes. Applied Physics Letters, 2007, 90, 141112.	1.5	95
190	High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature. Applied Physics Letters, 2007, 90, 131112.	1.5	154
191	Beryllium compensation doping of InAsâ^•GaSb infrared superlattice photodiodes. Applied Physics Letters, 2007, 91, .	1.5	51
192	Polarity inversion of type II InAsâ [•] GaSb superlattice photodiodes. Applied Physics Letters, 2007, 91, .	1.5	23
193	Near bulk-limited ROA of long-wavelength infrared type-II InAsâ̂-GaSb superlattice photodiodes with polyimide surface passivation. Applied Physics Letters, 2007, 90, 233513.	1.5	89
194	Research Activity on Type II InAsâ^•GaSb Superlattice for LWIR Detection and Imaging at the Center for Quantum Devices AIP Conference Proceedings, 2007, , .	0.3	2
195	High operating temperature 320×256 middle-wavelength infrared focal plane array imaging based on an InAsâ°InGaAsâ°InAlAsâ°InP quantum dot infrared photodetector. Applied Physics Letters, 2007, 90, 201109.	1.5	71
196	Thermal imaging based on high-performance InAs/InP quantum-dot infrared photodetector operating at high temperature. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
197	Very high quantum efficiency in type-II InAsâ^•GaSb superlattice photodiode with cutoff of 12μm. Applied Physics Letters, 2007, 90, 231108.	1.5	110
198	Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN. Applied Physics Letters, 2007, 91, 071120.	1.5	93

#	Article	IF	Citations
199	Dark current suppression in type II InAsâ [•] GaSb superlattice long wavelength infrared photodiodes with M-structure barrier. Applied Physics Letters, 2007, 91, .	1.5	220
200	Type-II M structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes. , 2007, , .		72
201	Reliability of strain-balanced Ga0.331In0.669Asâ^•Al0.659In0.341Asâ^•InP quantum-cascade lasers under continuous-wave room-temperature operation. Applied Physics Letters, 2006, 88, 261106.	1.5	20
202	Electroluminescence of InAs–GaSb Heterodiodes. IEEE Journal of Quantum Electronics, 2006, 42, 126-130.	1.0	10
203	High differential resistance type-II InAsâ^•GaSb superlattice photodiodes for the long-wavelength infrared. Applied Physics Letters, 2006, 89, 093506.	1.5	57
204	Electroluminescence at 375nm from a ZnOâ^•GaN:Mgâ^•c-Al2O3 heterojunction light emitting diode. Applied Physics Letters, 2006, 88, 141918.	1.5	170
205	Negative luminescence of InAs/GaSb superlattice photodiodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 444-447.	0.8	3
206	Investigations of p-type signal for ZnO thin films grown on (100) GaAs substrates by pulsed laser deposition. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1038-1041.	0.8	16
207	Short-wavelength ultraviolet light-emitting diodes based on AlGaN. , 2005, , .		0
208	Characterization and analysis of single-mode high-power continuous-wave quantum-cascade laser. Journal of Applied Physics, 2005, 98, 084508.	1.1	2
209	Avalanche multiplication in AlGaN based solar-blind photodetectors. Applied Physics Letters, 2005, 87, 241123.	1.5	93
210	Beam steering in high-power CW quantum-cascade lasers. IEEE Journal of Quantum Electronics, 2005, 41, 833-841.	1.0	53
211	Negative and positive luminescence in midwavelength infrared InAs-GaSb superlattice photodiodes. IEEE Journal of Quantum Electronics, 2005, 41, 1474-1479.	1.0	7
212	320×256 solar-blind focal plane arrays based on AlxGa1â^2xN. Applied Physics Letters, 2005, 86, 011117.	1.5	66
213	Short wavelength (/spl lambda//spl sim/4.3 /spl mu/m) high-performance continuous-wave quantum-cascade lasers. IEEE Photonics Technology Letters, 2005, 17, 1154-1156.	1.3	42
214	Uncooled operation of type-II InAsâ^•GaSb superlattice photodiodes in the midwavelength infrared range. Applied Physics Letters, 2005, 86, 233106.	1.5	112
215	III-nitride Ultraviolet Light Emitting Sources. , 2005, , 213-249.		2
216	High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well. Applied Physics Letters, 2004, 84, 1046-1048.	1.5	165

#	Article	IF	Citations
217	Demonstration of a 256×256 middle-wavelength infrared focal plane array based on InGaAs/InGaP quantum dot infrared photodetectors. Applied Physics Letters, 2004, 84, 2232-2234.	1.5	86
218	High quantum efficiency AlGaN solar-blind p-i-n photodiodes. Applied Physics Letters, 2004, 84, 1248-1250.	1.5	121
219	High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers. Applied Physics Letters, 2004, 84, 314-316.	1.5	135
220	Passivation of type II InAs/GaSb superlattice photodiodes. Thin Solid Films, 2004, 447-448, 489-492.	0.8	65
221	Review of III-nitride optoelectronic materials for light emission and detection. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, S141-S148.	0.8	8
222	High-Power Continuous-Wave Operation of Quantum-Cascade Lasers up to 60 <tex>\$^circ\$</tex> C. IEEE Photonics Technology Letters, 2004, 16, 747-749.	1.3	47
223	Ridge-Width Dependence on High-Temperature Continuous-Wave Quantum-Cascade Laser Operation. IEEE Photonics Technology Letters, 2004, 16, 744-746.	1.3	38
224	Ammonium sulfide passivation of Type-II InAs/GaSb superlattice photodiodes. Applied Physics Letters, 2004, 84, 2037-2039.	1.5	90
225	Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering. Physical Review B, 2004, 69, .	1.1	144
226	High performance quantum cascade laser results at the Centre for Quantum Devices. Physica Status Solidi A, 2003, 195, 144-150.	1.7	1
227	Demonstration of 256 x 256 focal plane array based on Al-free GalnAs-InP QWIP. IEEE Photonics Technology Letters, 2003, 15, 1273-1275.	1.3	28
228	Photoluminescence study of AlGaN-based 280 nm ultraviolet light-emitting diodes. Applied Physics Letters, 2003, 83, 4083-4085.	1.5	72
229	4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes. Applied Physics Letters, 2003, 83, 4701-4703.	1.5	124
230	Very high average power at room temperature from \hat{l} » \hat{a} % \hat{s} .9- \hat{l} 4m quantum-cascade lasers. Applied Physics Letters, 2003, 82, 3397-3399.	1.5	40
231	High-power continuous-wave operation of a 6 \hat{l} /4m quantum-cascade laser at room temperature. Applied Physics Letters, 2003, 83, 2503-2505.	1.5	78
232	High quality type II InAs/GaSb superlattices with cutoff wavelength â^1/43.7 Î1/4m using interface engineering. Journal of Applied Physics, 2003, 94, 4720-4722.	1.1	36
233	Cavity-length effects of high-temperature high-power continuous-wave characteristics in quantum-cascade lasers. Applied Physics Letters, 2003, 83, 5136-5138.	1.5	16
234	Type II InAs/GaSb superlattices for high-performance photodiodes and FPAs., 2003, 5246, 501.		19

#	Article	IF	Citations
235	Characteristics of high-quality p-type AlxGa1â^'xN/GaN superlattices. Applied Physics Letters, 2002, 80, 2108-2110.	1.5	21
236	High-power (λâ^¼9 μm) quantum cascade lasers. Applied Physics Letters, 2002, 80, 4091-4093.	1.5	40
237	Future of Al \times Ga 1- \times N materials and device technology for ultraviolet photodetectors. , 2002, , .		31
238	Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 \hat{l} 4m. Applied Physics Letters, 2002, 81, 3675-3677.	1.5	130
239	Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications. Applied Physics Letters, 2002, 80, 3262-3264.	1.5	124
240	High-average-power, high-duty-cycle (λâ^¼6 μm) quantum cascade lasers. Applied Physics Letters, 2002, 83 4321-4323.	1.5	32
241	Top-emission ultraviolet light-emitting diodes with peak emission at 280 nm. Applied Physics Letters, 2002, 81, 801-802.	1.5	91
242	Short-wavelength solar-blind detectors-status, prospects, and markets. Proceedings of the IEEE, 2002, 90, 1006-1014.	16.4	277
243	Long-wavelength type-II photodiodes operating at room temperature. IEEE Photonics Technology Letters, 2001, 13, 517-519.	1.3	31
244	<title>Novel Sb-based alloy for uncooled infrared photodetector applications</title> ., 2001,,.		4
245	High-performance quantum cascade lasers (λâ^¼11 μm) operating at high temperature (T ⩾425 K Letters, 2001, 78, 416-418.) _{1.5} Applied	Physics
246	High power InAsSb/InAsSbP electrical injection laser diodes emitting between 3 and 5 $\hat{l}^{1/4}$ m. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 74, 52-55.	1.7	10
247	Solar-blind AlGaN photodiodes with very low cutoff wavelength. Applied Physics Letters, 2000, 76, 403-405.	1.5	166
248	Very long wavelength infrared type-II detectors operating at 80 K. Applied Physics Letters, 2000, 77, 1572-1574.	1.5	57
249	Optoelectronic devices based on III-V compound semiconductors which have made a major scientific and technological impact in the past 20 years. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6, 1344-1354.	1.9	24
250	Tl incorporation in InSb and lattice contraction of In1â^'xTlxSb. Applied Physics Letters, 2000, 76, 297-299.	1.5	7
251	Low-threshold and high power λâ^¼9.0 μm quantum cascade lasers operating at room temperature. Applied Physics Letters, 2000, 77, 1741.	1.5	20
252	Growth of InAsSb alloys on GaAs and Si substrates for uncooled infrared photodetector applications., 1999, 3629, 338.		2

#	Article	IF	Citations
253	High-temperature continuous-wave operation of \hat{l} » $\hat{a}^1/48$ $\hat{l}^1/4m$ quantum cascade lasers. Applied Physics Letters, 1999, 74, 173-175.	1.5	20
254	Low-threshold 7.3 $\hat{1}\frac{1}{4}$ m quantum cascade lasers grown by gas-source molecular beam epitaxy. Applied Physics Letters, 1999, 74, 2758-2760.	1.5	25
255	InAsSb/InAsP strained-layer superlattice injection lasers operating at 4.0 μm grown by metal-organic chemical vapor deposition. Applied Physics Letters, 1999, 74, 3438-3440.	1.5	30
256	Pulse autocorrelation measurements based on two- and three-photon conductivity in a GaN photodiode. Applied Physics Letters, 1999, 75, 3778-3780.	1.5	62
257	High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN. Applied Physics Letters, 1999, 74, 762-764.	1.5	175
258	High power asymmetrical InAsSb/InAsSbP/AlAsSb double heterostructure lasers emitting at 3.4 \hat{l}^{1} /4m. Applied Physics Letters, 1999, 74, 1194-1196.	1.5	23
259	Lateral epitaxial overgrowth of GaN films on sapphire and silicon substrates. Applied Physics Letters, 1999, 74, 570-572.	1.5	73
260	High-quality visible-blind AlGaN p-i-n photodiodes. Applied Physics Letters, 1999, 74, 1171-1173.	1.5	145
261	Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides. Journal of Applied Physics, 1999, 85, 2497-2501.	1.1	31
262	Multicolor 4- to 20-um InP-based quantum well infrared photodetectors., 1999, 3629, 147.		2
263	Aluminum gallium nitride short-period superlattices doped with magnesium. Applied Physics Letters, 1999, 74, 2023-2025.	1.5	57
264	Band-gap narrowing and potential fluctuation in Si-doped GaN. Applied Physics Letters, 1999, 74, 102-104.	1.5	88
265	P-Based Semiconductor Multilayers. Series on Directions in Condensed Matter Physics, 1999, , 453-511.	0.1	0
266	Noise performance of InGaAs-InP quantum-well infrared photodetectors. IEEE Journal of Quantum Electronics, 1998, 34, 1124-1128.	1.0	24
267	InGaAlAs-InP quantum-well infrared photodetectors for 8-20-μm wavelengths. IEEE Journal of Quantum Electronics, 1998, 34, 1873-1876.	1.0	12
268	Visible blind GaN p-i-n photodiodes. Applied Physics Letters, 1998, 72, 3303-3305.	1.5	112
269	Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices. Physical Review B, 1998, 58, 15378-15380.	1.1	117
270	<title>Responsivity and noise performance of InGaAs/InP quantum well infrared photodetectors</title> ., 1998,,.		8

#	Article	IF	CITATIONS
271	GaN-BASED LASER DIODES. International Journal of High Speed Electronics and Systems, 1998, 09, 1007-1080.	0.3	5
272	Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector. Applied Physics Letters, 1998, 73, 963-965.	1.5	154
273	Room temperature operation of 8–12 μm InSbBi infrared photodetectors on GaAs substrates. Applied Physics Letters, 1998, 73, 602-604.	1.5	26
274	GalnN/GaN Multi-Quantum Well Laser Diodes Grown by Low-Pressure Metalorganic Chemical Vapor Deposition. MRS Internet Journal of Nitride Semiconductor Research, 1998, 3, 1.	1.0	38
275	Continuous-wave room-temperature operation of InGaN/GaN multiquantum well lasers grown by low-pressure metalorganic chemical vapor deposition. , 1998, , .		2
276	Growth and characterization of InSbBi for long wavelength infrared photodetectors. Applied Physics Letters, 1997, 70, 3266-3268.	1.5	57
277	Aluminum free GaInP/GaAs quantum well infrared photodetectors for long wavelength detection. Applied Physics Letters, 1997, 70, 360-362.	1.5	25
278	InAsSbP/InAsSb/InAs laser diodes (λ=3.2 μm) grown by low-pressure metal–organic chemical-vapor deposition. Applied Physics Letters, 1997, 70, 40-42.	1.5	22
279	AlxGa1â^'xN (0⩽x⩽1) ultraviolet photodetectors grown on sapphire by metal-organic chemical-vapor deposition. Applied Physics Letters, 1997, 70, 949-951.	1.5	113
280	Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range. Applied Physics Letters, 1997, 71, 1403-1405.	1.5	83
281	Long-wavelength infrared photodetectors based on InSbBi grown on GaAs substrates. Applied Physics Letters, 1997, 71, 2298-2300.	1.5	14
282	Gas-source molecular beam epitaxy growth of an 8.5 \hat{l} 4m quantum cascade laser. Applied Physics Letters, 1997, 71, 2593-2595.	1.5	44
283	Long-term reliability of Al-free InGaAsP/GaAs (λ=808 nm) lasers at high-power high-temperature operation. Applied Physics Letters, 1997, 71, 3042-3044.	1.5	52
284	InAsSbP-InAsSb-InAs diode lasers emitting at 3.2 /spl mu/m grown by metal-organic chemical vapor deposition. IEEE Photonics Technology Letters, 1997, 9, 173-175.	1.3	25
285	Semiconductor ultraviolet detectors. Journal of Applied Physics, 1996, 79, 7433-7473.	1.1	1,340
286	InSb infrared photodetectors on Si substrates grown by molecular beam epitaxy. IEEE Photonics Technology Letters, 1996, 8, 673-675.	1.3	37
287	AlxGa1-xN-Based Materials and Heterostructures. Materials Research Society Symposia Proceedings, 1996, 449, 79.	0.1	15
288	GaAs/GaInP Quantum Well Intersubband Photodetectors for Focal Plane Array Infrared Imaging. Materials Research Society Symposia Proceedings, 1996, 450, 195.	0.1	1

#	Article	IF	CITATIONS
289	InSb Detectors and Focal Plane Arrays on GaAs, Si, and Al203 Substrates. Materials Research Society Symposia Proceedings, 1996, 450, 79.	0.1	O
290	Roomâ€temperature operation of InTlSb infrared photodetectors on GaAs. Applied Physics Letters, 1996, 69, 343-344.	1.5	18
291	Metalorganic chemical vapor deposition of monocrystalline GaN thin films on Î²â€ŁiGaO2 substrates. Applied Physics Letters, 1996, 69, 2116-2118.	1.5	67
292	Effect of the spin split-off band on optical absorption inp-typeGalâ^'xInxAsyPlâ^'yquantum-well infrared detectors. Physical Review B, 1996, 54, 10773-10783.	1.1	32
293	The molecular beam epitaxial growth of InSb on (111)B GaAs. Applied Physics Letters, 1996, 69, 215-217.	1.5	23
294	Longâ€wavelength InAsSb photoconductors operated at near room temperatures (200–300 K). Applied Physics Letters, 1996, 68, 99-101.	1.5	71
295	Growth of GaN without Yellow Luminescence. Materials Research Society Symposia Proceedings, 1995, 395, 625.	0.1	25
296	Optimized structure for InGaAsP/GaAs 808 nm high power lasers. Applied Physics Letters, 1995, 66, 3251-3253.	1.5	22
297	Kinetics of photoconductivity in nâ€ŧype GaN photodetector. Applied Physics Letters, 1995, 67, 3792-3794.	1.5	77
298	Persistent photoconductivity in thin undoped GaInP/GaAs quantum wells. Applied Physics Letters, 1995, 66, 171-173.	1.5	9
299	Second harmonic generation in hexagonal silicon carbide. Applied Physics Letters, 1995, 66, 1883-1885.	1.5	38
300	8–13 μm InAsSb heterojunction photodiode operating at near room temperature. Applied Physics Letters, 1995, 67, 2645-2647.	1.5	64
301	Growth of AlxGa1â^'xN:Ge on sapphire and silicon substrates. Applied Physics Letters, 1995, 67, 1745-1747.	1.5	90
302	High quality AIN and GaN epilayers grown on (00a‹1) sapphire, (100), and (111) silicon substrates. Applied Physics Letters, 1995, 66, 2958-2960.	1.5	175
303	Background limited performance in pâ€doped GaAs/Ga0.71In0.29As0.39P0.61 quantum well infrared photodetectors. Applied Physics Letters, 1995, 67, 22-24.	1.5	12
304	Efficiency of photoluminescence and excess carrier confinement in InGaAsP/GaAs structures prepared by metalâ€organic chemicalâ€vapor deposition. Journal of Applied Physics, 1994, 76, 700-704.	1.1	9
305	Correlation between xâ€ray diffraction patterns and strain distribution inside GalnP/GaAs superlattices. Applied Physics Letters, 1994, 65, 2812-2814.	1.5	8
306	Characterization of InTlSb/InSb grown by lowâ€pressure metalâ€organic chemical vapor deposition on a GaAs substrate. Journal of Applied Physics, 1994, 75, 3196-3198.	1.1	12

#	Article	IF	CITATIONS
307	Interface roughness scattering in thin, undoped GaInP/GaAs quantum wells. Applied Physics Letters, 1994, 65, 1578-1580.	1.5	19
308	Highâ€power InGaAsP/GaAs 0.8â€Î¼m laser diodes and peculiarities of operational characteristics. Applied Physics Letters, 1994, 65, 1004-1005.	1.5	18
309	Photoconductance measurements on InTlSb/InSb/GaAs grown by lowâ€pressure metalorganic chemical vapor deposition. Applied Physics Letters, 1994, 64, 460-462.	1.5	41
310	Intersubband hole absorption in GaAsâ€GalnP quantum wells grown by gas source molecular beam epitaxy. Applied Physics Letters, 1994, 65, 1130-1132.	1.5	7
311	High-power laser diodes based on InGaAsP alloys. Nature, 1994, 369, 631-633.	13.7	47
312	InGaP/InGaAsP/GaAs 0.808 /spl mu/m separate confinement laser diodes grown by metalorganic chemical vapor deposition. IEEE Photonics Technology Letters, 1994, 6, 132-134.	1.3	46
313	High quality aluminum nitride epitaxial layers grown on sapphire substrates. Applied Physics Letters, 1994, 64, 339-341.	1.5	100
314	A crystallographic model of (00a‹1) aluminum nitride epitaxial thin film growth on (00a‹1) sapphire substrate. Journal of Applied Physics, 1994, 75, 3964-3967.	1.1	104
315	Crystallography of epitaxial growth of wurtziteâ€type thin films on sapphire substrates. Journal of Applied Physics, 1994, 75, 4515-4519.	1.1	89
316	Molecular beam epitaxial growth of high quality InSb. Applied Physics Letters, 1994, 65, 3338-3340.	1.5	47
317	Investigation of the heteroepitaxial interfaces in the GaInP/GaAs superlattices by highâ€resolution xâ€ray diffractions and dynamical simulations. Journal of Applied Physics, 1993, 73, 3284-3290.	1.1	33
318	Anomalous Hall effect in InSb layers grown by metalorganic chemical vapor deposition on GaAs substrates. Journal of Applied Physics, 1993, 73, 5009-5013.	1.1	40
319	Well resolved roomâ€ŧemperature photovoltage spectra of GaAsâ€GaInP quantum wells and superlattices. Applied Physics Letters, 1993, 62, 618-620.	1.5	15
320	GalnAsP/InP 1.35 \hat{l}_{4} m double heterostructure laser grown on silicon substrate by metalorganic chemical vapor deposition. Journal of Applied Physics, 1993, 74, 743-745.	1.1	6
321	Transport properties innâ€type InSb films grown by metalorganic chemical vapor deposition. Applied Physics Letters, 1993, 63, 964-966.	1.5	23
322	Growth of In1â^'xTlxSb, a new infrared material, by lowâ€pressure metalorganic chemical vapor deposition. Applied Physics Letters, 1993, 63, 361-363.	1.5	37
323	Comparison of the physical properties of GaN thin films deposited on (0001) and (0111,2) sapphire substrates. Applied Physics Letters, 1993, 63, 973-975.	1.5	74
324	Optical investigations of GaAsâ€GaInP quantum wells grown on the GaAs, InP, and Si substrates. Applied Physics Letters, 1992, 61, 1703-1705.	1.5	18

#	Article	IF	CITATIONS
325	Optical, Electrical, and Structural Characterization of GalnAsP/InP Layers Grown on Silicon Substrate for 1.35 μm Laser Applications. Materials Research Society Symposia Proceedings, 1992, 281, 369.	0.1	1
326	High-Quality InSb Growth on GaAs and Si by Low-Pressure Metalorganic Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 1992, 281, 375.	0.1	10
327	High power, 0.98 νm, Ga0.8In0.2As/GaAs/Ga0.51In0.49P multiple quantum well laser. Journal of Applied Physics, 1992, 72, 4447-4448.	1.1	14
328	Extremely high electron mobility in a GaAsâ€Gaxln1â^'xP heterostructure grown by metalorganic chemical vapor deposition. Applied Physics Letters, 1989, 55, 457-459.	1.5	52
329	A high quantum efficiency GalnAsâ€InP photodetectorâ€onâ€silicon substrate. Journal of Applied Physics, 1989, 65, 4066-4068.	1.1	20
330	Very high purity InP epilayer grown by metalorganic chemical vapor deposition. Applied Physics Letters, 1988, 52, 117-119.	1.5	45
331	First GalnAsPâ€InP doubleâ€heterostructure laser emitting at 1.27 Î⅓m on a silicon substrate. Applied Physics Letters, 1988, 53, 725-727.	1.5	35
332	cw phaseâ€locked array Ga0.25In0.75As0.5P0.5â€InP high power semiconductor laser grown by lowâ€pressure metalorganic chemical vapor deposition. Applied Physics Letters, 1987, 50, 230-232.	1.5	24
333	Properties of 2D quantum well lasers. Surface Science, 1986, 174, 148-154.	0.8	10
334	First observation of the twoâ€dimensional properties of the electron gas in Ga0.49In0.51P/GaAs heterojunctions grown by low pressure metalorganic chemical vapor deposition. Applied Physics Letters, 1986, 48, 1267-1269.	1.5	41
335	First observation of twoâ€dimensional hole gas in a Ga0.47In0.53As/InP heterojunction grown by metalorganic vapor deposition. Journal of Applied Physics, 1986, 60, 2453-2456.	1.1	15
336	Low-threshold distributed feedback lasers fabricated on material grown completely by LP-MOCVD. IEEE Journal of Quantum Electronics, 1985, 21, 507-511.	1.0	24
337	Aging test of MOCVD shallow proton stripe GalnAsP/InP, DH laser diode emitting at 1.5 î¼m. Electronics Letters, 1983, 19, 481.	0.5	18
338	Very low threshold GaInAsP/InP double-heterostructure lasers grown by LP MOCVD. Electronics Letters, 1983, 19, 336.	0.5	30
339	Twoâ€dimensional electron gas in a In0.53Ga0.47Asâ€InP heterojunction grown by metalorganic chemical vapor deposition. Applied Physics Letters, 1982, 40, 877-879.	1.5	104
340	Peculiarities of operation characteristics of high-power InGaAsP/GaAs 0.8 \hat{l}^{1} /4m laser diodes. , 0, , .		1
341	Optimization of InGaAsP/GaAs laser diode processing for high-power operation. , 0, , .		1
342	Theoretical investigation of J/sub th/ and \hat{I} -/sub d/ vs. cavity length for InGaAsP/GaAs high power lasers. , 0, , .		0

#	Article	lF	CITATIONS
343	First demonstration of high power lnAs/sub x/Sb/sub y/(P)/sub 1-x-y//lnAs/sub x/Sb/sub 1-z/ electrical injection lasers diodes emitting between 4.0 and 4.8 $l^{1/4}$ m. , 0, , .		O
344	High power 3-12 \hat{l} 4m laser diodes, recent advances and future trend. , 0, , .		0
345	Very high quality p-type Al/sub x/Ga/sub 1-x/N/GaN superlattice. , 0, , .		O
346	Development of quantum cascade lasers for high peak output power and low threshold current density. , 0, , .		0
347	Recent advances in 3-5 microns InGaAs/InAlAs/InP quantum cascade lasers. , 0, , .		1