
David Mu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6109915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A microRNA polycistron as a potential human oncogene. Nature, 2005, 435, 828-833.	27.8	3,390
2	Identification and Validation of Oncogenes in Liver Cancer Using an Integrative Oncogenomic Approach. Cell, 2006, 125, 1253-1267.	28.9	989
3	The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nature Structural and Molecular Biology, 2007, 14, 185-193.	8.2	786
4	A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science, 1990, 248, 981-987.	12.6	685
5	Reconstitution of Human DNA Repair Excision Nuclease in a Highly Defined System. Journal of Biological Chemistry, 1995, 270, 2415-2418.	3.4	431
6	Quinoenzymes in Biology. Annual Review of Biochemistry, 1994, 63, 299-344.	11.1	328
7	Reaction Mechanism of Human DNA Repair Excision Nuclease. Journal of Biological Chemistry, 1996, 271, 8285-8294.	3.4	320
8	Repair of Cisplatinâ^'DNA Adducts by the Mammalian Excision Nucleaseâ€. Biochemistry, 1996, 35, 10004-10013.	2.5	316
9	Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell, 2003, 3, 297-302.	16.8	229
10	Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16663-16668.	7.1	203
11	Human DNA Repair Excision Nuclease. Journal of Biological Chemistry, 1995, 270, 20862-20869.	3.4	188
12	The General Transcription-Repair Factor TFIIH Is Recruited to the Excision Repair Complex by the XPA Protein Independent of the TFIIE Transcription Factor. Journal of Biological Chemistry, 1995, 270, 4896-4902.	3.4	180
13	Replication Protein A Confers Structure-specific Endonuclease Activities to the XPF-ERCC1 and XPG Subunits of Human DNA Repair Excision Nuclease. Journal of Biological Chemistry, 1996, 271, 11047-11050.	3.4	178
14	Tight junction proteins: From barrier to tumorigenesis. Cancer Letters, 2013, 337, 41-48.	7.2	178
15	Chronic cisplatin treatment promotes enhanced damage repair and tumor progression in a mouse model of lung cancer. Genes and Development, 2010, 24, 837-852.	5.9	174
16	<i>miR-17â^¼92</i> cooperates with <i>RB</i> pathway mutations to promote retinoblastoma. Genes and Development, 2011, 25, 1734-1745.	5.9	164
17	Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7803-7807.	7.1	152
18	Characterization of Reaction Intermediates of Human Excision Repair Nuclease. Journal of Biological Chemistry, 1997, 272, 28971-28979.	3.4	151

ΔΑνι Μυ

#	Article	IF	CITATIONS
19	Role of the chromobox protein CBX7 in lymphomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5389-5394.	7.1	150
20	Overproduction, Purification, and Characterization of the XPC Subunit of the Human DNA Repair Excision Nuclease. Journal of Biological Chemistry, 1996, 271, 19451-19456.	3.4	138
21	The splicing factor <scp>SRSF6</scp> is amplified and is an oncoprotein inÂlung and colon cancers. Journal of Pathology, 2013, 229, 630-639.	4.5	126
22	DNA Interstrand Cross-Links Induce Futile Repair Synthesis in Mammalian Cell Extracts. Molecular and Cellular Biology, 2000, 20, 2446-2454.	2.3	115
23	Mnk2 Alternative Splicing Modulates the p38-MAPK Pathway and Impacts Ras-Induced Transformation. Cell Reports, 2014, 7, 501-513.	6.4	92
24	Model for XPC-independent Transcription-coupled Repair of Pyrimidine Dimers in Humans. Journal of Biological Chemistry, 1997, 272, 7570-7573.	3.4	91
25	Gene Mutations and Genomic Rearrangements in the Mouse as a Result of Transposon Mobilization from Chromosomal Concatemers. PLoS Genetics, 2006, 2, e156.	3.5	90
26	Neurofibromin 1 (NF1) Defects Are Common in Human Ovarian Serous Carcinomas and Co-occur with TP53 Mutations. Neoplasia, 2008, 10, 1362-IN9.	5.3	74
27	MiR-365 regulates lung cancer and developmental gene thyroid transcription factor 1. Cell Cycle, 2012, 11, 177-186.	2.6	74
28	Functional complementation of xeroderma pigmentosum complementation group E by replication protein A in an in vitro system Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 5014-5018.	7.1	72
29	Murine bilateral retinoblastoma exhibiting rapid-onset, metastatic progression and N-myc gene amplification. EMBO Journal, 2007, 26, 784-794.	7.8	69
30	MicroRNA-33a Mediates the Regulation of High Mobility Group AT-Hook 2 Gene (HMGA2) by Thyroid Transcription Factor 1 (TTF-1/NKX2–1). Journal of Biological Chemistry, 2013, 288, 16348-16360.	3.4	56
31	Identification of alterations in DNA copy number in host stromal cells during tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19848-19853.	7.1	55
32	Characterizing the developmental pathways <i>TTF-1</i> , <i>NKX2–8</i> , and <i>PAX9</i> in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5312-5317.	7.1	50
33	MicroRNAs and lung cancers: from pathogenesis to clinical implications. Frontiers of Medicine, 2012, 6, 134-155.	3.4	46
34	Occludin Is a Direct Target of Thyroid Transcription Factor-1 (TTF-1/NKX2–1). Journal of Biological Chemistry, 2012, 287, 28790-28801.	3.4	43
35	Hepsin colocalizes with desmosomes and induces progression of ovarian cancer in a mouse model. International Journal of Cancer, 2008, 123, 2041-2047.	5.1	42
36	Human andE.coliexcinucleases are affected differently by the sequence context of acetylaminofluorene–guanine adduct. Nucleic Acids Research, 1994, 22, 4869-4871.	14.5	39

ΔΑνι Μυ

#	Article	IF	CITATIONS
37	Two Distinct Categories of Focal Deletions in Cancer Genomes. PLoS ONE, 2013, 8, e66264.	2.5	34
38	The Complexity of Thyroid Transcription Factor 1 with Both Pro- and Anti-oncogenic Activities. Journal of Biological Chemistry, 2013, 288, 24992-25000.	3.4	29
39	Translocation t(14;18) and gain of chromosome 18/BCL2: effects on BCL2 expression and apoptosis in B-cell non-Hodgkin's lymphomas. Leukemia, 2005, 19, 2313-2323.	7.2	27
40	Preparation of molybdenumeta.3-pentadienyl complexes: structural characterization of a delocalized pentadienyl ligand in antieta.3 geometry. Organometallics, 1989, 8, 402-407.	2.3	25
41	Cooperation between Rb and Arf in suppressing mouse retinoblastoma. Journal of Clinical Investigation, 2012, 122, 1726-1733.	8.2	23
42	Genetic similarities between organogenesis and tumorigenesis of the lung. Cell Cycle, 2008, 7, 200-204.	2.6	19
43	Roles of Thyroid Transcription Factor 1 in Lung Cancer Biology. Vitamins and Hormones, 2018, 106, 517-544.	1.7	16
44	Gain of chromosome 6p is an infrequent cause of increased PIM1 expression in B-cell non-Hodgkin's lymphomas. Leukemia, 2006, 20, 539-542.	7.2	15
45	Thyroid Transcription Factor 1 Reprograms Angiogenic Activities of Secretome. Scientific Reports, 2016, 6, 19857.	3.3	13
46	Preparation and properties of molybdenum-pentadienyl complexes: a facile .eta.5 .dblarweta.3 reversible interconversion for a pentadienyl ligand. Organometallics, 1989, 8, 2248-2252.	2.3	12
47	Reaction of ironeta.1-dienyl complexes with dienophiles. X-ray structures of the [4 + 2] cycloaddition adducts. Organometallics, 1988, 7, 1155-1161.	2.3	9
48	Thyroid transcription factor 1 enhances cellular statin sensitivity via perturbing cholesterol metabolism. Oncogene, 2018, 37, 3290-3300.	5.9	9
49	DNA Excision Repair Assays. Progress in Molecular Biology and Translational Science, 1997, 56, 63-81.	1.9	7
50	Connecting Cholesterol Efflux Factors to Lung Cancer Biology and Therapeutics. International Journal of Molecular Sciences, 2021, 22, 7209.	4.1	6
51	Mechanistic Study of TTF-1 Modulation of Cellular Sensitivity to Cisplatin. Scientific Reports, 2019, 9, 7990.	3.3	3
52	[8] Cloning of mammalian topa quinone-containing enzymes. Methods in Enzymology, 1995, 258, 114-122.	1.0	1
53	Thyroid Transcription Factorâ€1 modulation of secretome alters sensitivity to cisplatin in lung cancer. FASEB Journal, 2018, 32, lb434.	0.5	0