Eric Faulques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6109835/publications.pdf

Version: 2024-02-01

137 papers	2,255 citations	218677 26 h-index	38 g-index
137	137 docs citations	137	2191
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Vibrational and electronic structures of tin selenide nanowires confined inside carbon nanotubes. Synthetic Metals, 2022, 284, 116968.	3.9	9
2	A study of the temperature effect on photoluminescence of the P3HT/MWNT nanocomposites. Materials Today: Proceedings, 2021, 36, 549-552.	1.8	O
3	Surface morphology features of point contact gas sensors based on Cu-TCNQ compound. Molecular Crystals and Liquid Crystals, 2021, 718, 25-35.	0.9	5
4	Chemical insertion of anthracene moiety into the backbone of a newly synthesized oligophenylene (OMPA): effect on the photo-physical properties. Research on Chemical Intermediates, 2021, 47, 3437-3451.	2.7	1
5	Machine Learning Guided Design of Single–Phase Hybrid Lead Halide White Phosphors. Advanced Science, 2021, 8, e2101407.	11.2	14
6	Tailoring the Solid-State Fluorescence of BODIPY by Supramolecular Assembly with Polyoxometalates. Inorganic Chemistry, 2021, 60, 12602-12609.	4.0	4
7	Photo-physical effects of the chemical insertion of the dimethyl-amine moiety on the newly synthesized oligophenylene (OMPA). Journal of Molecular Structure, 2021, 1241, 130599.	3.6	3
8	Machine learning identification of experimental conditions for the synthesis of single-phase white phosphors. Matter, 2021, 4, 3967-3976.	10.0	3
9	Composites between Perovskite and Layered Co-Based Oxides for Modification of the Thermoelectric Efficiency. Materials, 2021, 14, 7019.	2.9	4
10	Combined experimental and first-principles studies of a hydrated uranyl carbonate: Insight into phonon spectra for a core environmental class of uranium materials. Journal of Physics and Chemistry of Solids, 2020, 138, 109260.	4.0	3
11	Doped Lead Halide White Phosphors for Very High Efficiency and Ultraâ€High Color Rendering. Angewandte Chemie, 2020, 132, 2824-2829.	2.0	19
12	Doped Lead Halide White Phosphors for Very High Efficiency and Ultraâ€High Color Rendering. Angewandte Chemie - International Edition, 2020, 59, 2802-2807.	13.8	98
13	Optical absorption and electron dynamics in reduced graphene oxide-nanostructured porphyrin for active solar cell layers. Materials Today: Proceedings, 2020, 20, 91-95.	1.8	2
14	Tuning the oxidation states of dopants in Li2SrSiO4:Eu,Ce and control of the photoemission color. Journal of Solid State Chemistry, 2020, 288, 121367.	2.9	6
15	Template process for engineering the photoluminescence of PVK and PPVâ€based nanowires. Journal of Applied Polymer Science, 2019, 136, 48201.	2.6	6
16	Conductance quantization as a new selective sensing mechanism in dendritic point contacts. SN Applied Sciences, 2019, 1 , 1 .	2.9	16
17	New Robust Luminescent Supramolecular Assemblies Based on [Ln(Mo ₈ 0 ₂₆) ₂] ^{5–} (Ln = Eu, Sm) Polyoxometalates. Inorganic Chemistry, 2019, 58, 16322-16325.	4.0	5
18	Self-ordering promoted by the nanoconfinement of poly(3-hexylthiophene) and its nanocomposite with single-walled carbon nanotubes. Nanotechnology, 2019, 30, 055603.	2.6	5

#	Article	IF	CITATIONS
19	Strong Solidâ€state Luminescence Enhancement in Supramolecular Assemblies of Polyoxometalate and "Aggregationâ€Induced Emissionâ€â€active Phospholium. Chemistry - an Asian Journal, 2019, 14, 1642-1646.	3.3	15
20	A New Quantum Approach to Selective Detection in Gases and Liquid Media., 2019,,.		2
21	Charge Carrier Dynamics and pH Effect on Optical Properties of Anionic and Cationic Porphyrin–Graphene Oxide Composites. Journal of Electronic Materials, 2018, 47, 2897-2904.	2.2	11
22	Synthesis and opto-structural characterization of reduced graphene oxide and meso-tetrakis(4-phenylsulfonic-acid) porphyrin composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 8594-8600.	2.2	5
23	Exploring Optical and Vibrational Properties of the Uranium Carbonate Andersonite with Spectroscopy and First-Principles Calculations. Journal of Physical Chemistry C, 2018, 122, 7410-7420. Vibrational dynamics of extreme < mml:math	3.1	18
24	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mn>2</mml:mn><mml:mo>×<mml:mrow><mml:mn>3</mml:mn><mml:mo>×comml:mn>accordant (mml:mo) (mml:mo)</mml:mo></mml:mrow></mml:mo></mml:mrow>		
25	98, Vibrational spectroscopy of a crystallographically unsettled uranyl carbonate: Structural impact and model. Vibrational Spectroscopy, 2018, 99, 184-189.	2.2	8
26	Monitoring self-sensing damage of multiple carbon fiber composites using piezoresistivity. Synthetic Metals, 2017, 224, 56-62.	3.9	22
27	Spectroscopic markers for uranium(vi) phosphates. Part II: the use of time-resolved photoluminescence. RSC Advances, 2017, 7, 919-926.	3.6	6
28	A p-Type Zinc-Based Metal–Organic Framework. Inorganic Chemistry, 2017, 56, 6208-6213.	4.0	9
29	New Insights To Simulate the Luminescence Properties of Pt(II) Complexes Using Quantum Calculations. Journal of Chemical Theory and Computation, 2017, 13, 1748-1755.	5. 3	15
30	Light assisted rechargeable batteries: a proof of concept with BODIPY derivatives acting as a combined photosensitizer and electrical storage unit. Journal of Materials Chemistry A, 2017, 5, 1902-1905.	10.3	10
31	Spectroscopy and DFT studies of uranyl carbonate, rutherfordine, UO2CO3: a model for uranium transport, carbon dioxide sequestration, and seawater species. Journal Physics D: Applied Physics, 2017, 50, 505501.	2.8	7
32	DFT Modeling of Novel Donor-Acceptor (D-A) Molecules Incorporating 3-hexylthiophene (3HT) for Bulk Heterojunction Solar Cells. ChemistrySelect, 2017, 2, 10082-10090.	1.5	15
33	Structural and photophysical studies of few layers of reduced graphene oxide functionalized with Sn(IV) tetrakis (4-pyridyl)porphyrin dichloride. Synthetic Metals, 2016, 221, 247-252.	3.9	8
34	Strain sensing in single carbon fiber epoxy composites by simultaneous in-situ Raman and piezoresistance measurements. Carbon, 2016, 109, 124-130.	10.3	36
35	Drastic solid-state luminescence color tuning of an archetypal Ir(iii) complex using polyoxometalates and its application as a vapoluminescence chemosensor. Journal of Materials Chemistry C, 2016, 4, 11392-11395.	5.5	18
36	Unraveling the real structures of solution-based and surface-bound poly(3-hexylthiophene) (P3HT) oligomers: a combined theoretical and experimental study. RSC Advances, 2016, 6, 56174-56182.	3.6	21

#	Article	IF	CITATIONS
37	New insights into the vibrational and optical signatures of trans-stilbene via integrated experimental and quantum mechanical approaches. Physical Chemistry Chemical Physics, 2016, 18, 19378-19385.	2.8	9
38	Facile design of red-emitting waveguides using hybrid nanocomposites made of inorganic clusters dispersed in SU8 photoresist host. Optical Materials, 2016, 52, 196-202.	3.6	14
39	Photoexcitations in fully organic nanocomposites of poly(3-hexylthiophene) and multiwalled carbon nanotubes. Materials Chemistry and Physics, 2016, 171, 83-90.	4.0	10
40	Structural and electrical characteristics of GaN, n-GaN and A1 x Ga $1\hat{a}^{*}$ x N. Journal of Alloys and Compounds, 2016, 656, 110-118.	5.5	6
41	Time-Resolved Photoluminescence Studies on AlGaN Double Heterostructures. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 2016, 33, 76-81.	3.2	1
42	Electronic interaction in composites of a conjugated polymer and carbon nanotubes: first-principles calculation and photophysical approaches. Beilstein Journal of Nanotechnology, 2015, 6, 1138-1144.	2.8	9
43	Spectroscopic markers for uranium(<scp>vi</scp>) phosphates: a vibronic study. RSC Advances, 2015, 5, 71219-71227.	3.6	33
44	Combined theoretical and time-resolved photoluminescence investigations of [Mo ₆ Br ⁱ metal cluster units: evidence of dual emission. Physical Chemistry Chemical Physics, 2015, 17, 28574-28585.	2.8	62
45	Suseinargiuite, (Na0.5Bi0.5)MoO4, the Na-Bi analogue of wulfenite, from Su Seinargiu, Sardinia, Italy. European Journal of Mineralogy, 2015, 27, 695-699.	1.3	4
46	A New Method for Controlling the Quantized Growth of Dendritic Nanoscale Point Contacts via Switchover and Shell Effects. Journal of Physical Chemistry C, 2015, 119, 632-639.	3.1	21
47	Zn based nanoparticle–carbon nanotube hybrid materials: Interaction and charge transfer. Carbon, 2014, 66, 442-449.	10.3	6
48	Effects of single-walled carbon nanotubes on the optical and photo-conductive properties of their composite films with regio-regular poly(3-hexylthiophene). Materials Chemistry and Physics, 2014, 143, 1102-1110.	4.0	19
49	Deep red luminescent hybrid copolymer materials with high transition metal cluster content. Journal of Materials Chemistry C, 2014, 2, 1545-1552.	5.5	52
50	Nanostructuration and band gap emission enhancement of ZnO film via electrochemical anodization. Thin Solid Films, 2014, 571, 168-174.	1.8	20
51	Raman Spectroscopy of Optical Transitions and Vibrational Energies of $\hat{a}^1/41$ nm HgTe Extreme Nanowires within Single Walled Carbon Nanotubes. ACS Nano, 2014, 8, 9044-9052.	14.6	33
52	A copolymer of PVK and P3HT and its nanocomposite with single-walled carbon nanotubes. Synthetic Metals, 2014, 197, 246-251.	3.9	18
53	New copolymer of poly(<i>N</i> â€vinylcarbazole) and poly(<i>p</i> â€phenylenevinylene) for optoelectronic devices. Journal of Applied Polymer Science, 2013, 130, 2839-2847.	2.6	29
54	Improved photoconductive properties of composite nanofibers based on aligned conjugated polymer and single-walled carbon nanotubes. Nano Research, 2013, 6, 149-158.	10.4	17

#	Article	IF	Citations
55	On the photo-physical properties of soluble oligomer from anodic oxidation of chlorine-substituted anisole (OPClAn). Synthetic Metals, 2013, 166, 22-32.	3.9	7
56	Dynamic properties of the excited states of oligo-N-vinylcarbazole functionalized with single walled carbon nanotubes. Journal of Molecular Structure, 2013, 1039, 46-50.	3.6	6
57	Color Control in Coaxial Two-Luminophore Nanowires. ACS Nano, 2013, 7, 2977-2987.	14.6	53
58	Synthesis and Optical Study of a New Oligophenylene. Polymers, 2012, 4, 1226-1241.	4.5	2
59	Investigations of optical properties of MEH-PPV/ZnO nanocomposites by photoluminescence spectroscopy. Synthetic Metals, 2012, 162, 1756-1761.	3.9	29
60	High-precision imaging of an encapsulated Lindqvist ion and correlation of its structure and symmetry with quantum chemical calculations. Nanoscale, 2012, 4, 1190.	5. 6	11
61	Photoluminescence properties of new poly(<i>N</i> â€vinylcarbazole)â€3â€methylthiophene (PVKâ€3MeT) graft copolymer. Journal of Applied Polymer Science, 2012, 125, 126-132.	2.6	5
62	Structural and photoluminescence characterization of vertically aligned multiwalled carbon nanotubes coated with ZnO by magnetron sputtering. Thin Solid Films, 2012, 520, 4816-4819.	1.8	20
63	Temperature and size dependence of time-resolved exciton recombination in ZnO quantum dots. Applied Physics Letters, 2011, 99, .	3.3	18
64	Vibrational States in Opals Revisited. Journal of Physical Chemistry C, 2011, 115, 11968-11975.	3.1	6
65	Photoluminescence properties of new PPV derivatives. Journal of Luminescence, 2011, 131, 1541-1544.	3.1	22
66	Mapping emissive channels of quantum dots: Influence of size and environment on energy transfer in the time domain. Applied Physics Letters, 2010, 97, 153111.	3.3	3
67	Electron-phonon interaction function in the layered dichalcogenide 2Ha-TaSe2. Low Temperature Physics, 2009, 35, 539-543.	0.6	2
68	Elaboration of conjugated polymer nanowires and nanotubes for tunable photoluminescence properties. Nanotechnology, 2009, 20, 155701.	2.6	46
69	Coaxial nickel/poly(p-phenylene vinylene) nanowires as luminescent building blocks manipulated magnetically. Nanotechnology, 2009, 20, 405601.	2.6	23
70	Steady state and transient photoluminescence in poly-p-phenylene vinylene films and nanofibers. Journal of Chemical Physics, 2009, 130, 124706.	3.0	24
71	Novel blue emitters based on π-conjugated block copolymers. Materials Science and Engineering C, 2009, 29, 372-376.	7.3	9
72	Optical reflectivity study of silicon ion implanted poly(methyl methacrylate). Applied Surface Science, 2009, 256, 779-786.	6.1	20

#	Article	IF	CITATIONS
73	Characterization of Chemical Bonding in Ion-Implanted Polymers by Means of Mid-Infrared Reflectivity. Applied Spectroscopy, 2009, 63, 1022-1026.	2.2	11
74	Reflectivity modification of polymethylmethacrylate by silicon ion implantation. Applied Surface Science, 2008, 254, 4820-4827.	6.1	42
75	Silicon ion implanted PMMA for soft electronics. Organic Electronics, 2008, 9, 1051-1060.	2.6	30
76	Optical Properties of Poly(para-phenylene Vinylene) and Single-Walled Carbon Nanotube Composite Films:  Effects of Conversion Temperature, Precursor Dilution, and Nanotube Concentrations. Journal of Physical Chemistry C, 2007, 111, 15111-15118.	3.1	24
77	Synthesis and characterization of a new alternating copolymer containing quaterphenyl and fluorenyl groups. Polymer, 2007, 48, 98-104.	3.8	19
78	Electrical and optical properties of PPV and single-walled carbon nanotubes composite films. Synthetic Metals, 2005, 155, 63-67.	3.9	44
79	Optical properties of carbon nanotube-PPVcomposites: influence of the PPV conversion temperature and nanotube concentration. Synthetic Metals, 2005, 154, 221-224.	3.9	9
80	SERS, FT-IR and photoluminescence studies on single-walled carbon nanotubes/conducting polymers composites. Synthetic Metals, 2005, 155, 666-669.	3.9	15
81	Transient photoluminescence from highly disordered silica-rich natural phases with and without nanostructures. Physics and Chemistry of Minerals, 2003, 30, 393-400.	0.8	5
82	Synthesis and Physical Properties of Co-intercalated Layered Lanthanide Oxychlorides LixTHFyLnOCl (Ln = Y, Lu). Chemistry of Materials, 2003, 15, 4325-4331.	6.7	3
83	Characterization and spectral properties of the new organic metal (BEDT-TTF)6(Mo8O26)(DMF)3. Synthetic Metals, 2003, 138, 483-489.	3.9	16
84	Fluorine segregation in the solid state organisation of the $1\hat{a}^{q}$ 2 mixed-valence salt of bis(2,2-difluoropropylenedithio)tetrathiafulvalene with the isosteric nickel dithiolene complex. CrystEngComm, 2002, 4, 249-251.	2.6	10
85	Raman spectroscopy of natural silica in Chicxulub impactite, Mexico. Comptes Rendus - Geoscience, 2002, 334, 21-26.	1.2	27
86	ETUDE SPECTROMETRIQUE DE LA LAZURITE DU PAMIR, TAJIKISTAN. Canadian Mineralogist, 2002, 40, 885-893.	1.0	31
87	Two Successive Single Crystal Phase Transitions Involving the Coordination Sphere of Antimony in PhSb(dmit), the First Organo-Antimony(III) Dithiolene Complex. Inorganic Chemistry, 2001, 40, 2570-2577.	4.0	31
88	Raman spectroscopy of BEDT-TTF trihalide salts containing BrxlyCl1â^'xâ^'y anions. Synthetic Metals, 2001, 120, 807-808.	3.9	1
89	A complete optical study of the conductive form of polyaniline: the emeraldine salt. Synthetic Metals, 2001, 119, 389-390.	3.9	11
90	Spectroscopy of natural silica-rich glasses Journal of Mineralogical and Petrological Sciences, 2001, 96, 120-128.	0.9	23

#	Article	IF	CITATIONS
91	Spectroscopy of the electron–phonon interaction in the layered two-dimensional dichalcogenide 1T–VSe[sub 2]. Low Temperature Physics, 2001, 27, 56.	0.6	4
92	The influence of the substitution of Te for Se on the photoconductive properties of In2Se3-xTe3xthin films. Journal of Physics Condensed Matter, 2001, 13, 1839-1850.	1.8	6
93	Identification of trihalide anions in bis(ethylenedithio)tetrathiafulvalene salts by Raman spectroscopy. Journal of Chemical Physics, 2000, 112, 7634-7640.	3.0	15
94	Phonon self-energy effects inκâ^'(BEDTâ^'TTF)2Cu[N(CN)2]Br. Physical Review B, 2000, 62, R9291-R9294.	3.2	18
95	Sers Spectra of Mono and Bisphthalocyanine Complexes Deposited on Ag and Au Supports. Spectroscopy Letters, 2000, 33, 625-631.	1.0	2
96	In situ Raman spectroscopy of thermal phase transformation of ET2I3 polycrystalline network in polymer films. Synthetic Metals, 2000, 109, 301-304.	3.9	4
97	Low frequency Raman spectroscopy of β″-(ET)2Br0.5ICl1.5 single crystals. Synthetic Metals, 2000, 109, 305-308.	3.9	4
98	Properties of photoconductive In2Se3 thin films, crystallized by post-deposition heat treatment in nitrogen atmosphere. Applied Surface Science, 1999, 151, 171-179.	6.1	16
99	Temperature dependence of charge carrier creation in poly(p-phenylene vinylene) [PPV]. Synthetic Metals, 1999, 101, 409-412.	3.9	0
100	Micro-Raman spectroscopy of single crystals of ET salts with mixed trihalide anions. Synthetic Metals, 1999, 103, 1979-1980.	3.9	2
101	Optical Properties of PPV and PPP Polymers. Synthetic Metals, 1999, 101, 196-197.	3.9	7
102	Synthesis, Fabrication, and Photoluminescence of CaF2 Doped with Rare Earth lons. Journal of Fluorescence, 1998, 8, 283-287.	2.5	7
103	Transformation of (BEDT-TTF)2I3 networks in polymer films into superconducting \hat{l}^2 t phase as studied by resonant Raman spectroscopy. Synthetic Metals, 1998, 94, 27-30.	3.9	8
104	Caractérisation et dopage électrochimique d'un film de PPV photoconverti. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1998, 95, 1355-1358.	0.2	0
105	Raman line shapes from sputtered thin films of Y(Pr)Ba2Cu3O6+ \hat{l} : Fine structures and oxygen ordering. Physical Review B, 1997, 55, 3974-3986.	3.2	9
106	Monomer, Dimer, and Tetramer States in Molybdenum Complexes of Tetracyanoquinodimethane. Journal of Physical Chemistry B, 1997, 101, 1561-1568.	2.6	14
107	Isotopic shifts and Raman line shapes of the organic superconductor \hat{l}^2 -(BEDT-TTF)2I3. Synthetic Metals, 1997, 86, 1985-1986.	3.9	0
108	Infrared and Raman Spectra of bis-Thiourea Lead(II) Chloride. Spectroscopy Letters, 1996, 29, 1275-1284.	1.0	4

#	Article	IF	CITATIONS
109	Radical cation-radical anion salts: Molybdenum complexes containing the [TCNQ]•â^' or [TCNE]•â^' radical anions. X-ray crystal structure of [Mo(Et2NCS2)4](TCNQ). Polyhedron, 1995, 14, 1741-1750.	2.2	27
110	Phonons of thecis-polyacetylene chain. Physical Review B, 1995, 52, 15039-15042.	3.2	5
111	Raman studies of uranyl nitrate and its hydroxy bridged dimer. Spectrochimica Acta Part A: Molecular Spectroscopy, 1994, 50, 757-763.	0.1	22
112	lodine insertion in high-Tc cuprates Raman, magnetization, X-ray photoelectron and electron energy loss measurements. Physica C: Superconductivity and Its Applications, 1994, 219, 297-314.	1.2	15
113	Oxygen-sublattice ordering and intercalation mechanism of chlorine inYBa2Cu3O6+δ. Physical Review B, 1994, 50, 1209-1222.	3.2	15
114	Raman spectral studies of uranyl sulphate and its urea complex structural isomers. Spectrochimica Acta Part A: Molecular Spectroscopy, 1993, 49, 975-983.	0.1	11
115	Isotope effects in the Raman spectra of 13C enriched C60. Synthetic Metals, 1993, 56, 3044-3049.	3.9	5
116	XPS studies of the Bi-Sr-Ca-Cu-O ceramics at temperatures nearTc. Physical Review B, 1993, 48, 12989-12992.	3.2	8
117	Raman spectra of iodide species in intercalated IBi2Sr2CaCu2O8+δ. Solid State Communications, 1992, 82, 531-535.	1.9	32
118	Characterization of thin BiSrCaCuO superconducting films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1992, 15, 138-147.	3.5	1
119	Oxygen vibrations in the series Bi2Sr2Can-1CunO4+2n+y. Journal De Physique, I, 1991, 1, 901-916.	1.2	9
120	Vibrational analysis of heterocyclic polymers: A comparative study of polythiophene, polypyrrole, and polyisothianaphtene. Journal of Chemical Physics, 1989, 90, 7585-7593.	3.0	78
121	Fully oriented cis-(CH)x: Experimental and theoretical analysis of the polarized Raman spectra. Synthetic Metals, 1989, 28, D317-D322.	3.9	3
122	Resonance raman spectroscopy and vibrational analysis of poly(isothianaphthene) and related compounds. Synthetic Metals, 1989, 28, 533-538.	3.9	29
123	Raman and IR studies on the superconducting Biî—'Srî—'Caî—'Cuî—'O system. Journal of the Less Common Metals, 1989, 151, 139-145.	0.8	7
124	Transport and vibrational spectra of oxygen doped Y Ba2Cu3O6+δ. Solid State Communications, 1988, 65, 1343-1346.	1.9	34
125	Raman scattering of doped polyacetylene. Synthetic Metals, 1988, 24, 35-40.	3.9	11
126	Polarized resonant Raman spectra of fully orientedcis-(CH)xfilms. Physical Review B, 1988, 38, 10645-10651.	3.2	9

#	Article	IF	CITATIONS
127	Analysis of resonant Raman scattering spectra of fully oriented undoped and iodine-dopedtrans-polyacetylene: Experiments and theory. Physical Review B, 1987, 35, 3028-3031.	3.2	19
128	Raman study of alkali-metal doped (CH)x complexes. Synthetic Metals, 1987, 17, 313-318.	3.9	14
129	Properties of stretched trans(CH)x systems: Analysis of polarized resonant Raman scattering. Synthetic Metals, 1987, 17, 325-330.	3.9	56
130	Polarized resonant Raman spectra of fully orientedtrans-polyacetylene: Experiments and theory. Physical Review B, 1986, 33, 8622-8628.	3.2	60
131	Resonant Raman scattering of partially isomerized and doped polyacetylene: An application of the conjugation length distribution model. Solid State Communications, 1985, 53, 583-586.	1.9	34
132	Polarized resonance Raman spectroscopy of fully-oriented crystalline trans-(CH)x. Synthetic Metals, 1985, 11, 123-128.	3.9	8
133	Lithium doping of (CH)x molecular diffusion of the dopant. Journal of Chemical Physics, 1984, 80, 6285-6290.	3.0	18
134	Vibrational properties of Li-doped polyacetylene. Synthetic Metals, 1984, 9, 53-61.	3.9	28
135	Experimental and theoretical Raman results in trans polyacetylene. Solid State Communications, 1983, 46, 851-855.	1.9	101
136	Lithium doping of cis polyacetylene (CH)x. Polymer, 1982, 23, 173-175.	3.8	16
137	Bromine-substituted polyacetylene, [CH1yBRy]x: Synthesis and characterization. Journal of Polymer Science, Polymer Letters Edition, 1982, 20, 211-216.	0.4	7