Enrique Mateos-Naranjo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/610875/publications.pdf

Version: 2024-02-01

103 papers 3,655 citations

35 h-index 149698 56 g-index

103 all docs

103 docs citations

103 times ranked

3435 citing authors

#	Article	IF	CITATIONS
1	Growth and Photosynthetic Responses to Salinity of the Salt-marsh Shrub Atriplex portulacoides. Annals of Botany, 2007, 100, 555-563.	2.9	216
2	Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biology, 2010, 12, 79-87.	3.8	166
3	Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. Journal of Plant Physiology, 2015, 185, 75-83.	3.5	151
4	Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiologia Plantarum, 2006, 128, 116-124.	5.2	139
5	Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiology and Biochemistry, 2013, 63, 115-121.	5.8	123
6	Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Marine Pollution Bulletin, 2008, 56, 2037-2042.	5 . O	112
7	Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. Journal of Hazardous Materials, 2010, 184, 299-307.	12.4	106
8	Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis. Journal of Hazardous Materials, 2011, 185, 862-869.	12.4	97
9	Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils. Frontiers in Microbiology, 2015, 6, 1450.	3.5	97
10	Assessing the role of endophytic bacteria in the halophyte <i>Arthrocnemum macrostachyum</i> salt tolerance. Plant Biology, 2017, 19, 249-256.	3.8	83
11	Growth and photosynthetic responses to zinc stress of an invasive cordgrass, <i>Spartina densiflora</i> . Plant Biology, 2008, 10, 754-762.	3.8	78
12	Scouting contaminated estuaries: Heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritima. Marine Pollution Bulletin, 2015, 90, 150-159.	5 . 0	70
13	Moving closer towards restoration of contaminated estuaries: Bioaugmentation with autochthonous rhizobacteria improves metal rhizoaccumulation in native Spartina maritima. Journal of Hazardous Materials, 2015, 300, 263-271.	12.4	69
14	Growth and photosynthetic responses to copper stress of an invasive cordgrass, Spartina densiflora. Marine Environmental Research, 2008, 66, 459-465.	2. 5	66
15	Niche divergence and limits to expansion in the high polyploid <i>Dianthus broteri</i> complex. New Phytologist, 2019, 222, 1076-1087.	7.3	64
16	PGPR Reduce Root Respiration and Oxidative Stress Enhancing Spartina maritima Root Growth and Heavy Metal Rhizoaccumulation. Frontiers in Plant Science, 2018, 9, 1500.	3 . 6	61
17	Safe Cultivation of Medicago sativa in Metal-Polluted Soils from Semi-Arid Regions Assisted by Heatand Metallo-Resistant PGPR. Microorganisms, 2019, 7, 212.	3. 6	61
18	Isolation of plant-growth-promoting and metal-resistant cultivable bacteria from Arthrocnemum macrostachyum in the Odiel marshes with potential use in phytoremediation. Marine Pollution Bulletin, 2016, 110, 133-142.	5 . O	59

#	Article	IF	Citations
19	Growth, reproductive and photosynthetic responses to copper in the yellow-horned poppy, Glaucium flavum Crantz Environmental and Experimental Botany, 2011, 71, 57-64.	4.2	57
20	Synergic effect of salinity and zinc stress on growth and photosynthetic responses of the cordgrass, Spartina densiflora. Journal of Experimental Botany, 2011, 62, 5521-5530.	4.8	54
21	Synergic effect of salinity and CO2 enrichment on growth and photosynthetic responses of the invasive cordgrass Spartina densiflora. Journal of Experimental Botany, 2010, 61, 1643-1654.	4.8	53
22	Carry-over of Differential Salt Tolerance in Plants Grown from Dimorphic Seeds of Suaeda splendens. Annals of Botany, 2008, 102, 103-112.	2.9	52
23	Zinc tolerance and accumulation in the halophytic species Juncus acutus. Environmental and Experimental Botany, 2014, 100, 114-121.	4.2	51
24	Assessing the effect of copper on growth, copper accumulation and physiological responses of grazing species Atriplex halimus: Ecotoxicological implications. Ecotoxicology and Environmental Safety, 2013, 90, 136-142.	6.0	50
25	Physiological and biochemical mechanisms preventing Cd-toxicity in the hyperaccumulator Atriplex halimus L Plant Physiology and Biochemistry, 2016, 106, 30-38.	5 . 8	48
26	Effectiveness of glyphosate and imazamox on the control of the invasive cordgrass Spartina densiflora. Ecotoxicology and Environmental Safety, 2009, 72, 1694-1700.	6.0	47
27	Assessment of the role of silicon in the Cu-tolerance of the C4 grass Spartina densiflora. Journal of Plant Physiology, 2015, 178, 74-83.	3 . 5	47
28	Impact of Plant Growth Promoting Bacteria on Salicornia ramosissima Ecophysiology and Heavy Metal Phytoremediation Capacity in Estuarine Soils. Frontiers in Microbiology, 2020, 11, 553018.	3 . 5	47
29	Investigating the mechanisms underlying phytoprotection by plant growthâ€promoting rhizobacteria in <i>Spartina densiflora</i> under metal stress. Plant Biology, 2018, 20, 497-506.	3.8	44
30	Comparison of germination, growth, photosynthetic responses and metal uptake between three populations of Spartina densiflora under different soil pollution conditions. Ecotoxicology and Environmental Safety, 2011, 74, 2040-2049.	6.0	42
31	Growth and photosynthetic limitation analysis of the Cd-accumulator Salicornia ramosissima under excessive cadmium concentrations and optimum salinity conditions. Plant Physiology and Biochemistry, 2016, 109, 103-113.	5 . 8	42
32	Growth and photosynthetic responses of the cordgrass Spartina maritima to CO2 enrichment and salinity. Chemosphere, 2010, 81, 725-731.	8.2	41
33	Halophyte fatty acids as biomarkers of anthropogenic-driven contamination in Mediterranean marshes: Sentinel species survey and development of an integrated biomarker response (IBR) index. Ecological Indicators, 2018, 87, 86-96.	6.3	41
34	Screening beneficial rhizobacteria from Spartina maritima for phytoremediation of metal polluted salt marshes: comparison of gram-positive and gram-negative strains. Environmental Science and Pollution Research, 2016, 23, 19825-19837.	5. 3	40
35	Supporting <i>Spartina</i> : Interdisciplinary perspective shows <i>Spartina</i> as a distinct solid genus. Ecology, 2019, 100, e02863.	3.2	39
36	Plant zonation at salt marshes of the endangered cordgrass Spartina maritima invaded by Spartina densiflora. Hydrobiologia, 2008, 614, 363-371.	2.0	38

#	Article	IF	CITATIONS
37	Effect of Plant Growth-Promoting Rhizobacteria on Salicornia ramosissima Seed Germination under Salinity, CO2 and Temperature Stress. Agronomy, 2019, 9, 655.	3.0	38
38	Bioaugmentation with bacteria selected from the microbiome enhances Arthrocnemum macrostachyum metal accumulation and tolerance. Marine Pollution Bulletin, 2017, 117, 340-347.	5.0	35
39	Tolerance to and accumulation of arsenic in the cordgrass Spartina densiflora Brongn. Bioresource Technology, 2012, 104, 187-194.	9.6	33
40	Environmental limitations on recruitment from seed in invasive Spartina densiflora on a southern European salt marsh. Estuarine, Coastal and Shelf Science, 2008, 79, 727-732.	2.1	32
41	Effects of Salinity on Germination and Seedling Establishment of Endangered Limonium emarginatum (Willd.) O. Kuntze. Journal of Coastal Research, 2008, 1, 201-205.	0.3	29
42	The role of two Spartina species in phytostabilization and bioaccumulation of Co, Cr, and Ni in the Tinto–Odiel estuary (SW Spain). Hydrobiologia, 2011, 671, 95-103.	2.0	29
43	Effects of sub-lethal glyphosate concentrations on growth and photosynthetic performance of non-target species Bolboschoenus maritimus. Chemosphere, 2013, 93, 2631-2638.	8.2	28
44	Bacterial inoculants for enhanced seed germination of Spartina densiflora: Implications for restoration of metal polluted areas. Marine Pollution Bulletin, 2016, 110, 396-400.	5.0	28
45	Deciphering the role of plant growth-promoting rhizobacteria in the tolerance of the invasive cordgrass Spartina densiflora to physicochemical properties of salt-marsh soils. Plant and Soil, 2015, 394, 45-55.	3.7	27
46	Improving legume nodulation and Cu rhizostabilization using a genetically modified rhizobia. Environmental Technology (United Kingdom), 2015, 36, 1237-1245.	2.2	27
47	Disentangling the effect of atmospheric CO2 enrichment on the halophyte Salicornia ramosissima J. Woods physiological performance under optimal and suboptimal saline conditions. Plant Physiology and Biochemistry, 2018, 127, 617-629.	5.8	27
48	Consortia of Plant-Growth-Promoting Rhizobacteria Isolated from Halophytes Improve Response of Eight Crops to Soil Salinization and Climate Change Conditions. Agronomy, 2021, 11, 1609.	3.0	27
49	Physiological responses to salinity in the yellow-horned poppy, Glaucium flavum. Plant Physiology and Biochemistry, 2011, 49, 186-194.	5.8	25
50	Interactive effect of salinity and zinc stress on growth and photosynthetic responses of the perennial grass, Polypogon. Ecological Engineering, 2016, 95, 171-179.	3.6	25
51	Modulation of Spartina densiflora plant growth and metal accumulation upon selective inoculation treatments: A comparison of gram negative and gram positive rhizobacteria. Marine Pollution Bulletin, 2017, 125, 77-85.	5.0	24
52	Bracteoles affect germination and seedling establishment in a Mediterranean population of Atriplex portulacoides. Aquatic Botany, 2007, 86, 93-96.	1.6	22
53	Ecotypic variations in phosphoenolpyruvate carboxylase activity of the cordgrass Spartina densiflora throughout its latitudinal distribution range. Plant Biology, 2010, 12, 154-160.	3.8	21
54	Investigating the physiological mechanisms underlying Salicornia ramosissima response to atmospheric CO2 enrichment under coexistence of prolonged soil flooding and saline excess. Plant Physiology and Biochemistry, 2019, 135, 149-159.	5.8	21

#	Article	IF	Citations
55	Factors influencing seed germination of Cyperus capitatus, inhabiting the moving sand dunes in southern Europe. Journal of Arid Environments, 2011, 75, 309-312.	2.4	20
56	Spartina densiflora demonstrates high tolerance to phenanthrene in soil and reduces it concentration. Marine Pollution Bulletin, 2011, 62, 1800-1808.	5.0	20
57	Growth and survival of Halimione portulacoides stem cuttings in heavy metal contaminated soils. Marine Pollution Bulletin, 2013, 75, 28-32.	5.0	19
58	Impact of short-term extreme temperature events on physiological performance of Salicornia ramosissima J. Woods under optimal and sub-optimal saline conditions. Scientific Reports, 2019, 9, 659.	3.3	19
59	Deciphering the ecophysiological traits involved during water stress acclimation and recovery of the threatened wild carnation, Dianthus inoxianus. Plant Physiology and Biochemistry, 2016, 109, 397-405.	5.8	18
60	Salinity alleviates zinc toxicity in the saltmarsh zinc-accumulator Juncus acutus. Ecotoxicology and Environmental Safety, 2018, 163, 478-485.	6.0	18
61	Effect of prior salt experience on desalination capacity of the halophyte Arthrocnemum macrostachyum. Desalination, 2019, 463, 50-54.	8.2	18
62	The effect of heavy metal contamination pre-conditioning in the heat stress tolerance of native and invasive Mediterranean halophytes. Ecological Indicators, 2020, 111, 106045.	6.3	17
63	Invasion and Extirpation Potential of Native and Invasive Spartina Species Under Climate Change. Frontiers in Marine Science, 2021, 8, .	2.5	17
64	Improved Medicago sativa Nodulation under Stress Assisted by Variovorax sp. Endophytes. Plants, 2022, 11, 1091.	3. 5	17
65	Effect of the Herbicides Terbuthylazine and Glyphosate on Photosystem II Photochemistry of Young Olive (<i>Olea europaea</i>) Plants. Journal of Agricultural and Food Chemistry, 2011, 59, 5528-5534.	5.2	16
66	Highlighting the differential role of leaf paraheliotropism in two Mediterranean Cistus species under drought stress and well-watered conditions. Journal of Plant Physiology, 2017, 213, 199-208.	3.5	16
67	The ACC-Deaminase Producing Bacterium Variovorax sp. CT7.15 as a Tool for Improving Calicotome villosa Nodulation and Growth in Arid Regions of Tunisia. Microorganisms, 2020, 8, 541.	3.6	16
68	Consortia of Plant-Growth-Promoting Rhizobacteria Isolated from Halophytes Improve the Response of Swiss Chard to Soil Salinization. Agronomy, 2022, 12, 468.	3.0	16
69	Polyploidy-mediated divergent light-harvesting and photoprotection strategies under temperature stress in a Mediterranean carnation complex. Environmental and Experimental Botany, 2020, 171, 103956.	4.2	15
70	Heavy Metal Pollution Structures Soil Bacterial Community Dynamics in SW Spain Polluted Salt Marshes. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	13
71	Heavy Metals and Trace Element Concentrations in Intertidal Soils of Four Estuaries of SW Iberian Peninsula. Soil and Sediment Contamination, 2009, 18, 320-327.	1.9	12
72	Physiological characterization of photosynthesis, chloroplast ultrastructure, and nutrient content in bracts and rosette leaves from Glaucium flavum. Photosynthetica, 2010, 48, 488-493.	1.7	12

#	Article	IF	Citations
7 3	Interpopulation Differences in Salinity Tolerance of the Invasive Cordgrass Spartina densiflora: Implications for Invasion Process. Estuaries and Coasts, 2016, 39, 98-107.	2.2	12
74	Multidimensional approach to evaluate Limonium brasiliense as source of early biomarkers for lead pollution monitoring under different saline conditions. Ecological Indicators, 2019, 104, 567-575.	6.3	12
7 5	Importance of Physiological Traits Vulnerability in Determine Halophytes Tolerance to Salinity Excess: A Comparative Assessment in Atriplex halimus. Plants, 2020, 9, 690.	3 . 5	12
76	Phenotypic diploidization in plant functional traits uncovered by synthetic neopolyploids in <i>Dianthus broteri</i> in <i>Dianthus broteri</i>	4.8	11
77	Soil phenanthrene phytoremediation capacity in bacteria-assisted Spartina densiflora. Ecotoxicology and Environmental Safety, 2019, 182, 109382.	6.0	10
78	Assessing the Biofortification of Wheat Plants by Combining a Plant Growth-Promoting Rhizobacterium (PGPR) and Polymeric Fe-Nanoparticles: Allies or Enemies?. Agronomy, 2022, 12, 228.	3.0	10
79	Role of Nodulation-Enhancing Rhizobacteria in the Promotion of Medicago sativa Development in Nutrient-Poor Soils. Plants, 2022, 11, 1164.	3 . 5	10
80	Atmospheric CO 2 enrichment effect on the Cu-tolerance of the C 4 cordgrass Spartina densiflora. Journal of Plant Physiology, 2018, 220, 155-166.	3. 5	9
81	Synergic effect of salinity and light-chilling on photosystem II photochemistry of the halophyte, Sarcocornia fruticosa. Journal of Arid Environments, 2009, 73, 586-589.	2.4	8
82	Differential photosynthetic performance of three Mediterranean shrubs under grazing by domestic goats. Photosynthetica, 2010, 48, 348-354.	1.7	8
83	Dissipation and effects of tricyclazole on soil microbial communities and rice growth as affected by amendment with alperujo compost. Science of the Total Environment, 2016, 550, 637-644.	8.0	8
84	Uncovering PGPB Vibrio spartinae inoculation-triggered physiological mechanisms involved in the tolerance of Halimione portulacoides to NaCl excess. Plant Physiology and Biochemistry, 2020, 154, 151-159.	5.8	8
85	Coastal Ecosystems as Sources of Biofertilizers in Agriculture: From Genomics to Application in an Urban Orchard. Frontiers in Marine Science, 2021, 8, .	2.5	8
86	Polyploidy promotes divergent evolution across the leaf economics spectrum and plant edaphic niche in the <i>Dianthus broteri</i> complex. Journal of Ecology, 2022, 110, 605-618.	4.0	8
87	The effect of simulated damage by weevils on Quercus ilex subsp. Ballota acorns germination, seedling growth and tolerance to experimentally induced drought. Forest Ecology and Management, 2018, 409, 740-748.	3.2	7
88	Combined effect of Cr-toxicity and temperature rise on physiological and biochemical responses of Atriplex halimus L Plant Physiology and Biochemistry, 2018, 132, 675-682.	5.8	7
89	Inter-population differences tolerance to Cu excess during the initials phases of <i>Juncus acutus</i> life cycle: implications for the design of metal restoration strategies. International Journal of Phytoremediation, 2019, 21, 550-555.	3.1	7
90	Conditions for translocation of a key threatened species, Dianthus inoxianus Gallego, in the southwestern Iberian Mediterranean forest. Forest Ecology and Management, 2019, 446, 1-9.	3.2	6

#	Article	IF	CITATIONS
91	Microbial strategies in non-target invasive Spartina densiflora for heavy metal clean up in polluted saltmarshes. Estuarine, Coastal and Shelf Science, 2020, 238, 106730.	2.1	6
92	Estimation of leaf area index and leaf chlorophyll content in <i>Sporobolus densiflorus</i> using hyperspectral measurements and PROSAIL model simulations. International Journal of Remote Sensing, 2021, 42, 1181-1200.	2.9	6
93	Municipal Solid Waste Compost Application Improves the Negative Impact of Saline Soil in Two Forage Species. Communications in Soil Science and Plant Analysis, 2014, 45, 1421-1434.	1.4	5
94	Heavy Metal Pre-Conditioning History Modulates Spartina patens Physiological Tolerance along a Salinity Gradient. Plants, 2021, 10, 2072.	3.5	5
95	Cordgrass Invasions in Mediterranean Marshes: Past, Present and Future. World Terraced Landscapes: History, Environment, Quality of Life Environmental History, 2018, , 171-193.	0.3	4
96	Sarcocornia fruticosa photosynthetic response to short-term extreme temperature events in combination with optimal and sub-optimal salinity concentrations. Plant Physiology and Biochemistry, 2020, 148, 45-52.	5.8	4
97	Salinity Modulates Juncus acutus L. Tolerance to Diesel Fuel Pollution. Plants, 2022, 11, 758.	3.5	4
98	Effect of herbicide and soil amendment on growth and photosynthetic responses in olive crops. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2007, 42, 523-528.	1.5	3
99	Understanding the impact of a complex environmental matrix associated with climate change on the European marshes engineer species Spartina martima. Environmental and Experimental Botany, 2021, 182, 104304.	4.2	3
100	Modular response to salinity in the annual halophyte, Salicornia ramosissima. Photosynthetica, 2010, 48, 157-160.	1.7	2
101	Interpopulation Responses to Metal Pollution: Metal Tolerance in Wetland Plants., 2013,, 149-161.		2
102	Photosynthetic responses to light intensity of Sarcocornia taxa (Chenopodiaceae). Russian Journal of Plant Physiology, 2010, 57, 887-891.	1.1	1
103	Seasonal ecophysiology of an endangered coastal species, the yellow-horned poppy (Glaucium flavum) Tj ETQq1	1 0.7843	14 rgBT /Over