
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6108301/publications.pdf Version: 2024-02-01

MING WANG

#	Article	IF	CITATIONS
1	Full-Length Transcriptome Sequencing-Based Analysis of Pinus sylvestris var. mongolica in Response to Sirex noctilio Venom. Insects, 2022, 13, 338.	2.2	4
2	Controllable construction of <scp>crossâ€linking</scp> network for regulating on the mechanical properties of polydimethylsiloxane and polydimethylsiloxane/carbon nanotubes composites. Journal of Applied Polymer Science, 2022, 139, .	2.6	11
3	Migration mechanism of carbon nanotubes and matching viscosity-dependent morphology in Co-continuous Poly(lactic acid)/Poly(lµ-caprolactone) blend: Towards electromagnetic shielding enhancement. Polymer, 2022, 252, 124963.	3.8	37
4	Improving dispersion and delamination of graphite in biodegradable starch materials via constructing cation-I€ interaction: Towards microwave shielding enhancement. Journal of Materials Science and Technology, 2022, 129, 196-205.	10.7	37
5	Multifunctional cotton non-woven fabrics coated with silver nanoparticles and polymers for antibacterial, superhydrophobic and high performance microwave shielding. Journal of Colloid and Interface Science, 2021, 582, 112-123.	9.4	189
6	Gut Structure and Microbial Communities in Sirex noctilio (Hymenoptera: Siricidae) and Their Predicted Contribution to Larval Nutrition. Frontiers in Microbiology, 2021, 12, 641141.	3.5	12
7	Proteo-Transcriptomic Characterization of Sirex nitobei (Hymenoptera: Siricidae) Venom. Toxins, 2021, 13, 562.	3.4	7
8	A general traitâ€based modelling framework for revealing patterns of airborne fungal dispersal threats to agriculture and native flora. New Phytologist, 2021, 232, 1506-1518.	7.3	8
9	Processing <scp>temperatureâ€dependent</scp> distribution of <scp>multiwall</scp> carbon nanotube in poly(ethyleneâ€ <i>co</i> â€1â€octene)/high density polyethylene for electrical conductivity and microwave shielding enhancement. Polymer Composites, 2021, 42, 1396-1406.	4.6	27
10	Identification and Validation of Reference Genes for Gene Expression Analysis in Different Development Stages of Amylostereum areolatum. Frontiers in Microbiology, 2021, 12, 827241.	3.5	5
11	Multilocus Genotyping and Intergenic Spacer Single Nucleotide Polymorphisms of Amylostereum areolatum (Russulales: Amylostereacea) Symbionts of Native and Non-Native Sirex Species. Journal of Fungi (Basel, Switzerland), 2021, 7, 1065.	3.5	2
12	Achieving highly crystalline rate and crystallinity in Poly(l-lactide) via in-situ melting reaction with diisocyanate and benzohydrazine to form nucleating agents. Polymer Testing, 2020, 81, 106216.	4.8	9
13	Achieve high performance microwave shielding in poly(Îμ-caprolactone)/multi-wall carbon nanotube composites via balancing absorption in conductive domains and multiple scattering at interfaces. Applied Surface Science, 2020, 508, 145178.	6.1	46
14	Genes Identification, Molecular Docking and Dynamics Simulation Analysis of Laccases from Amylostereum areolatum Provides Molecular Basis of Laccase Bound to Lignin. International Journal of Molecular Sciences, 2020, 21, 8845.	4.1	9
15	Genome Sequencing and Analysis of the Fungal Symbiont of Sirex noctilio, Amylostereum areolatum: Revealing the Biology of Fungus-Insect Mutualism. MSphere, 2020, 5, .	2.9	11
16	Effect of phase morphology and distribution of multi-walled carbon nanotubes on microwave shielding of poly(l-lactide)/poly(Îμ-caprolactone) composites. Composites Part A: Applied Science and Manufacturing, 2020, 137, 106008.	7.6	52
17	Constructing nanopores in poly(oxymethylene)/multi-wall carbon nanotube nanocomposites via poly(l-lactide) assisting for improving electromagnetic interference shielding. Journal of Colloid and Interface Science, 2020, 565, 536-545.	9.4	64
18	Parameter estimation for functional–structural plant models when data are scarce: using multiple parameter sets. Annals of Botany, 2020, 126, 559-570.	2.9	3

#	Article	IF	CITATIONS
19	Comparison of Wing, Ovipositor, and Cornus Morphologies between Sirex noctilio and Sirex nitobei Using Geometric Morphometrics. Insects, 2020, 11, 84.	2.2	4
20	Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor. Chemical Engineering Journal, 2020, 393, 124805.	12.7	151
21	Adjusting Distribution of Multiwall Carbon Nanotubes in Poly(<scp>L</scp> -lactide)/Poly(oxymethylene) Blends via Constructing Stereocomplex Crystallites: Toward Conductive and Microwave Shielding Enhancement. Journal of Physical Chemistry C, 2019, 123, 27884-27895.	3.1	22
22	Negative liquid sensing effect and tunable piezoresistive sensitivity in polydimethylsiloxane/carbon nanotubes/water-absorbing-expansion particles nanocomposites. Composites Part A: Applied Science and Manufacturing, 2019, 126, 105608.	7.6	11
23	Comparative study on solid and hollow glass microspheres for enhanced electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites. Composites Part B: Engineering, 2019, 177, 107378.	12.0	67
24	Achieving high electrical conductivity and excellent electromagnetic interference shielding in poly(lactic acid)/silver nanocomposites by constructing large-area silver nanoplates in polymer matrix. Composites Part B: Engineering, 2019, 171, 204-213.	12.0	80
25	Achieving highly electrical conductivity and piezoresistive sensitivity in polydimethylsiloxane/multi-walled carbon nanotube composites via the incorporation of silicon dioxide micro-particles. Composites Science and Technology, 2019, 177, 41-48.	7.8	68
26	Effects of endophytic fungi diversity in different coniferous species on the colonization of Sirex noctilio (Hymenoptera: Siricidae). Scientific Reports, 2019, 9, 5077.	3.3	23
27	Asymmetric deformation in poly(ethylene-co-1-octene)/multi-walled carbon nanotube composites with glass micro-beads for highly piezoresistive sensitivity. Chemical Engineering Journal, 2019, 370, 176-184.	12.7	34
28	Gentle crosslinking to enhance interfacial interaction in thermoplastic polyurethane/poly(ethylene-co-1-octene)/multi-walled carbon nanotube composites for conductive improvement and piezoresistive stability. Polymer Testing, 2019, 75, 142-150.	4.8	10
29	Percolation behavior of electromagnetic interference shielding in polymer/multi-walled carbon nanotube nanocomposites. Composites Science and Technology, 2019, 170, 70-76.	7.8	118
30	Constructing multiple interfaces in polydimethylsiloxane/multi-walled carbon nanotubes nanocomposites by the incorporation of cotton fibers for high-performance electromagnetic interference shielding and mechanical enhancement. Applied Surface Science, 2019, 466, 657-665.	6.1	82
31	Pattern-oriented modelling as a novel way to verify and validate functional–structural plant models: a demonstration with the annual growth module of avocado. Annals of Botany, 2018, 121, 941-959.	2.9	20
32	Graphene oxide-assisted dispersion of multi-walled carbon nanotubes in biodegradable Poly(ε-caprolactone) for mechanical and electrically conductive enhancement. Polymer Testing, 2018, 65, 387-397.	4.8	42
33	A facile approach to constructing efficiently segregated conductive networks in poly(lactic) Tj ETQq1 1 0.784314 shielding. Composites Science and Technology, 2018, 156, 136-143.	1 rgBT /Ov 7.8	verlock 10 Tf 131
34	Low magnetic field-induced alignment of nickel particles in segregated poly(l-lactide)/poly(ε-caprolactone)/multi-walled carbon nanotube nanocomposites: Towards remarkable and tunable conductive anisotropy. Chemical Engineering Journal, 2018, 347, 472-482.	12.7	61
35	Segregated polypropylene/cross-linked poly(ethylene-co-1-octene)/multi-walled carbon nanotube nanocomposites with low percolation threshold and dominated negative temperature coefficient effect: Towards electromagnetic interference shielding and thermistors. Composites Science and Technology, 2018, 159, 152-161.	7.8	83
36	Uniform fiber orientation and transcrystallization formed in isotactic polypropylene/short glass fiber composites via a shearâ€induced orientation extrusion. Polymer Composites, 2018, 39, 3168-3177.	4.6	8

#	Article	IF	CITATIONS
37	A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding. Applied Surface Science, 2018, 458, 236-244.	6.1	155
38	Ultralow Percolation Threshold in Poly(<scp>l</scp> -lactide)/Poly(ε-caprolactone)/Multiwall Carbon Nanotubes Composites with a Segregated Electrically Conductive Network. Journal of Physical Chemistry C, 2017, 121, 3087-3098.	3.1	83
39	Morphology, crystallization and rheological behavior in poly(butylene succinate)/cellulose nanocrystal nanocomposites fabricated by solution coagulation. Carbohydrate Polymers, 2017, 164, 75-82.	10.2	59
40	Crystallization kinetics and morphology of biodegradable Poly(Îμ-caprolactone) with chain-like distribution of ferroferric oxide nanoparticles: Toward mechanical enhancements. Polymer, 2017, 117, 84-95.	3.8	11
41	Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure. Nanoscale, 2017, 9, 11017-11026.	5.6	179
42	Morphology, rheological and crystallization behavior in thermoplastic polyurethane toughed poly(l-lactide) with stereocomplex crystallites. Polymer Testing, 2017, 62, 1-12.	4.8	30
43	New approach to morphological control for polypropylene/polyethylene blends via magnetic self-organization. Materials and Design, 2017, 117, 24-36.	7.0	21
44	Curing behavior of epoxidized soybean oil with biobased dicarboxylic acids. Polymer Testing, 2017, 57, 281-287.	4.8	74
45	Morphological, rheological, crystalline and mechanical properties of ethylene-vinyl acetate copolymer/linear low-density polyethylene/amphiphilic graphene oxide nanocomposites. Polymer Testing, 2017, 63, 289-297.	4.8	30
46	Poly(cetyl trimethylammonium 4-styrenesulfonate)-wrapped carbon nanotubes filled in polylactide nanocomposites: Fabrication and properties. Polymer Testing, 2017, 63, 323-333.	4.8	7
47	All Plant Oil Derived Epoxy Thermosets with Excellent Comprehensive Properties. Macromolecules, 2017, 50, 5729-5738.	4.8	84
48	A Generic Individual-Based Spatially Explicit Model as a Novel Tool for Investigating Insect-Plant Interactions: A Case Study of the Behavioural Ecology of Frugivorous Tephritidae. PLoS ONE, 2016, 11, e0151777.	2.5	8
49	Pattern-oriented modelling of plant architecture: A new approach for constructing functional-structural plant models. , 2016, , .		1
50	Morphology, rheological and crystallization behavior in non-covalently functionalized carbon nanotube reinforced poly(butylene succinate) nanocomposites with low percolation threshold. Polymer Testing, 2016, 50, 182-190.	4.8	56
51	Enhancement of the interfacial interaction between poly(vinyl chloride) and zinc oxide modified reduced graphene oxide. RSC Advances, 2016, 6, 5784-5791.	3.6	37
52	Shear-induced orientation of functional graphene oxide sheets in isotactic polypropylene. Journal of Materials Science, 2016, 51, 5185-5195.	3.7	34
53	Effect of baseâ€deposited graphene oxide on the thermal stabilization of poly(vinyl chloride). Polymer International, 2016, 65, 125-132.	3.1	10
54	Network alteration theory on Mullins effect in semicrystalline polymers. Polymer International, 2015, 64, 105-112.	3.1	6

#	Article	IF	CITATIONS
55	Fabrication of hierarchically crystallographic morphologies in isotactic polypropylene. Journal of Applied Polymer Science, 2015, 132, .	2.6	6
56	Effect of zinc maleate/zinc oxide complex on thermal stability of poly(vinyl chloride). Journal of Applied Polymer Science, 2015, 132, .	2.6	6
57	Poly(sodium 4-styrenesulfonate) modified graphene for reinforced biodegradable poly(ε-caprolactone) nanocomposites. RSC Advances, 2015, 5, 73146-73154.	3.6	24
58	Functionalized graphene sheets filled isotactic polypropylene nanocomposites. Composites Part B: Engineering, 2015, 71, 175-183.	12.0	79
59	The effect of talc orientation and transcrystallization on mechanical properties and thermal stability of the polypropylene/talc composites. Composites Part A: Applied Science and Manufacturing, 2014, 58, 7-15.	7.6	54
60	Crystallization and mechanical properties of isotactic polypropylene/calcium carbonate nanocomposites with a stratified distribution of calcium carbonate. Journal of Applied Polymer Science, 2014, 131, .	2.6	9
61	Effect of morphology on the interfacial slip of immiscible polypropylene/polystyrene blends. Rheologica Acta, 2013, 52, 963-972.	2.4	5
62	Effect of calcium stearates and zinc stearates on polyene formation of poly(vinyl chloride) under degradation. Journal of Elastomers and Plastics, 2013, 45, 173-186.	1.5	11
63	In situ fibrillation of polyamide 6 in isotactic polypropylene occurring in the laminatingâ€multiplying die. Polymers for Advanced Technologies, 2011, 22, 237-245.	3.2	56
64	Controlled Folding of 2D Au–Polymer Brush Composites into 3D Microstructures. Advanced Functional Materials, 2011, 21, 652-657.	14.9	76
65	Formation of Hierarchically Structured Thin Films. Advanced Functional Materials, 2009, 19, 2236-2243.	14.9	35
66	Simulation of mechanical properties of multilayered propylene–ethylene copolymer/ethylene 1-octene copolymer composites by equivalent box model and its experimental verification. European Polymer Journal, 2009, 45, 3269-3281.	5.4	52
67	Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler. Polymer, 2008, 49, 4861-4870.	3.8	100
68	Effect of pentaerythritol and organic tin with calcium/zinc stearates on the stabilization of poly(vinyl chloride). Polymer Degradation and Stability, 2006, 91, 2101-2109.	5.8	83