
Ortrun Mittelsten Scheid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6107750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mendelian and non-Mendelian genetics in model plants. Plant Cell, 2022, 34, 2455-2461.	6.6	6
2	<i>Aethionema arabicum</i> genome annotation using PacBio fullâ€length transcripts provides a valuable resource for seed dormancy and Brassicaceae evolution research. Plant Journal, 2021, 106, 275-293.	5.7	20
3	Polyploidy-associated paramutation in Arabidopsis is determined by small RNAs, temperature, and allele structure. PLoS Genetics, 2021, 17, e1009444.	3.5	10
4	Under siege: virus control in plant meristems and progeny. Plant Cell, 2021, 33, 2523-2537.	6.6	32
5	A CENH3 mutation promotes meiotic exit and restores fertility in SMG7-deficient Arabidopsis. PLoS Genetics, 2021, 17, e1009779.	3.5	15
6	Versatile in vitro assay to recognize Cas9â€induced mutations. Plant Direct, 2020, 4, e00269.	1.9	14
7	<i>Arabidopsis</i> shoot stem cells display dynamic transcription and <scp>DNA</scp> methylation patterns. EMBO Journal, 2020, 39, e103667.	7.8	55
8	Preparing Chromatin and RNA from Rare Cell Types with Fluorescence-Activated Nuclear Sorting (FANS). Methods in Molecular Biology, 2020, 2093, 95-105.	0.9	8
9	Illuminating (White and) Purple Patches. Plant Cell, 2019, 31, 1208-1209.	6.6	1
10	Probing the 3D architecture of the plant nucleus with microscopy approaches: challenges and solutions. Nucleus, 2019, 10, 181-212.	2.2	30
11	The Role of Noncoding RNAs in Double-Strand Break Repair. Frontiers in Plant Science, 2019, 10, 1155.	3.6	17
12	Aethionema arabicum: a novel model plant to study the light control of seed germination. Journal of Experimental Botany, 2019, 70, 3313-3328.	4.8	31
13	Transposons: a blessing curse. Current Opinion in Plant Biology, 2018, 42, 23-29.	7.1	163
14	Functional Characterization of SMG7 Paralogs in Arabidopsis thaliana. Frontiers in Plant Science, 2018, 9, 1602.	3.6	17
15	Epigenetic contribution to diversification. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3558-3560.	7.1	1
16	Developmental Control and Plasticity of Fruit and Seed Dimorphism in <i>Aethionema arabicum</i> . Plant Physiology, 2016, 172, 1691-1707.	4.8	59
17	Stress-induced structural changes in plant chromatin. Current Opinion in Plant Biology, 2015, 27, 8-16.	7.1	154
18	DNA Damage Repair in the Context of Plant Chromatin. Plant Physiology, 2015, 168, 1206-1218.	4.8	55

#	Article	IF	CITATIONS
19	DNA Damage Sensitivity Assays with Arabidopsis Seedlings. Bio-protocol, 2014, 4, .	0.4	8
20	How a Retrotransposon Exploits the Plant's Heat Stress Response for Its Activation. PLoS Genetics, 2014, 10, e1004115.	3.5	280
21	Epigenetic Regulation in Plants. Cold Spring Harbor Perspectives in Biology, 2014, 6, a019315-a019315.	5.5	310
22	Meristemâ€specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. EMBO Reports, 2014, 15, 446-452.	4.5	81
23	Measuring Homologous Recombination Frequency in Arabidopsis Seedlings. Bio-protocol, 2014, 4, .	0.4	0
24	The <i>Arabidopsis</i> SWR1 Chromatin-Remodeling Complex Is Important for DNA Repair, Somatic Recombination, and Meiosis Â. Plant Cell, 2013, 25, 1990-2001.	6.6	93
25	Stress-Induced Chromatin Changes: A Critical View on Their Heritability. Plant and Cell Physiology, 2012, 53, 801-808.	3.1	159
26	Answer to Wang and Luo, "Polyploidization increases meiotic recombination frequency in Arabidopsis: a close look at statistical modelling and data analysis". BMC Biology, 2012, 10, 31.	3.8	1
27	Epigenetic responses to stress: triple defense?. Current Opinion in Plant Biology, 2012, 15, 568-573.	7.1	114
28	Meiosis in Polyploid Plants. , 2012, , 33-55.		23
29	Advanced Methylome Analysis after Bisulfite Deep Sequencing: An Example in Arabidopsis. PLoS ONE, 2012, 7, e41528.	2.5	19
30	Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biology, 2011, 9, 24.	3.8	108
31	Genetic Rearrangements Can Modify Chromatin Features at Epialleles. PLoS Genetics, 2011, 7, e1002331.	3.5	22
32	Analysis of DNA Methylation in Plants by Bisulfite Sequencing. Methods in Molecular Biology, 2010, 631, 1-11.	0.9	13
33	The impact of the triploid block on the origin and evolution of polyploid plants. Trends in Genetics, 2010, 26, 142-148.	6.7	225
34	MOM1 and Pol-IV/V interactions regulate the intensity and specificity of transcriptional gene silencing. EMBO Journal, 2010, 29, 340-351.	7.8	63
35	Cooperation of Multiple Chromatin Modifications Can Generate Unanticipated Stability of Epigenetic States in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2010, 22, 34-47.	6.6	82
36	Epigenetic Regulation of Repetitive Elements Is Attenuated by Prolonged Heat Stress in <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 3118-3129.	6.6	397

#	Article	IF	CITATIONS
37	Analysis of Bisulfite Sequencing Data from Plant DNA Using CyMATE. Methods in Molecular Biology, 2010, 631, 13-22.	0.9	5
38	Transgenerational Stress Memory Is Not a General Response in Arabidopsis. PLoS ONE, 2009, 4, e5202.	2.5	142
39	Imprinting of the Polycomb Group Gene MEDEA Serves as a Ploidy Sensor in Arabidopsis. PLoS Genetics, 2009, 5, e1000663.	3.5	141
40	HISTONE MONOUBIQUITINATION1 Interacts with a Subunit of the Mediator Complex and Regulates Defense against Necrotrophic Fungal Pathogens in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 1000-1019.	6.6	232
41	Effective, homogeneous and transient interference with cytosine methylation in plant genomic DNA by zebularine. Plant Journal, 2009, 57, 542-554.	5.7	102
42	Rapid quantification of global DNA methylation by isocratic cation exchange high-performance liquid chromatography. Analytical Biochemistry, 2008, 375, 354-360.	2.4	66
43	CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. Plant Journal, 2007, 51, 526-536.	5.7	183
44	Medea in full self-control. Trends in Plant Science, 2006, 11, 469-471.	8.8	4
45	Chromatin assembly factor 1 ensures the stable maintenance of silent chromatin states in Arabidopsis. Genes To Cells, 2006, 11, 153-162.	1.2	81
46	Paramutation: an encounter leaving a lasting impression. Trends in Plant Science, 2005, 10, 283-290.	8.8	48
47	Arabidopsis Histone Deacetylase HDA6 Is Required for Maintenance of Transcriptional Gene Silencing and Determines Nuclear Organization of rDNA Repeats. Plant Cell, 2004, 16, 1021-1034.	6.6	264
48	Either/or selection markers for plant transformation. Nature Biotechnology, 2004, 22, 398-399.	17.5	9
49	BRU1, a novel link between responses to DNA damage and epigenetic gene silencing in Arabidopsis. Genes and Development, 2004, 18, 782-793.	5.9	197
50	Two means of transcriptional reactivation within heterochromatin. Plant Journal, 2003, 33, 743-749.	5.7	134
51	Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nature Genetics, 2003, 34, 65-69.	21.4	455
52	Formation of stable epialleles and their paramutation-like interaction in tetraploid Arabidopsis thaliana. Nature Genetics, 2003, 34, 450-454.	21.4	125
53	Two regulatory levels of transcriptional gene silencing in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13659-13662.	7.1	80
54	Disruption of the plant gene MOM releases transcriptional silencing of methylated genes. Nature, 2000, 405, 203-206.	27.8	256

#	Article	IF	CITATIONS
55	Endogenous Targets of Transcriptional Gene Silencing in Arabidopsis. Plant Cell, 2000, 12, 1165-1178.	6.6	152
56	Direct gene transfer to protoplasts of Arabidopsis thaliana. Plant Cell Reports, 1991, 9, 571-4.	5.6	30