Nicolas Perrin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6107329/publications.pdf

Version: 2024-02-01

		76326	71685
105	7,018	40	76
papers	citations	h-index	g-index
109	109	109	6880
109	109	109	0000
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	ECOLOGICAL-NICHE FACTOR ANALYSIS: HOW TO COMPUTE HABITAT-SUITABILITY MAPS WITHOUT ABSENCE DATA?. Ecology, 2002, 83, 2027-2036.	3.2	1,142
2	Sex Determination: Why So Many Ways of Doing It?. PLoS Biology, 2014, 12, e1001899.	5.6	916
3	Advances in our understanding of mammalian sex-biased dispersal. Molecular Ecology, 2007, 16, 1559-1578.	3.9	533
4	SEX REVERSAL: A FOUNTAIN OF YOUTH FOR SEX CHROMOSOMES?. Evolution; International Journal of Organic Evolution, 2009, 63, 3043-3049.	2.3	204
5	Ever-Young Sex Chromosomes in European Tree Frogs. PLoS Biology, 2011, 9, e1001062.	5.6	172
6	A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nature Communications, 2018, 9, 4088.	12.8	149
7	Convergent Genetic Architecture Underlies Social Organization in Ants. Current Biology, 2014, 24, 2728-2732.	3.9	131
8	POPULATION DEMOGRAPHY AND THE EVOLUTION OF HELPING BEHAVIORS. Evolution; International Journal of Organic Evolution, 2006, 60, 1137-1151.	2.3	121
9	Is Sociality Driven by the Costs of Dispersal or the Benefits of Philopatry? A Role for Kinâ€Discrimination Mechanisms. American Naturalist, 2001, 158, 471-483.	2.1	115
10	High-density sex-specific linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome without information on offspring sex. Heredity, 2016, 116, 177-181.	2.6	102
11	Sex-Chromosome Turnovers: The Hot-Potato Model. American Naturalist, 2014, 183, 140-146.	2.1	101
12	SEX-CHROMOSOME TURNOVERS INDUCED BY DELETERIOUS MUTATION LOAD. Evolution; International Journal of Organic Evolution, 2013, 67, 635-645.	2.3	99
13	Cryptic diversity among Western Palearctic tree frogs: Postglacial range expansion, range limits, and secondary contacts of three European tree frog lineages (Hyla arborea group). Molecular Phylogenetics and Evolution, 2012, 65, 1-9.	2.7	97
14	Mitochondrial and nuclear phylogeny of circum-Mediterranean tree frogs from the Hyla arborea group. Molecular Phylogenetics and Evolution, 2008, 49, 1019-1024.	2.7	93
15	TEMPERATURE-DEPENDENT TURNOVERS IN SEX-DETERMINATION MECHANISMS: A QUANTITATIVE MODEL. Evolution; International Journal of Organic Evolution, 2011, 65, 64-78.	2.3	92
16	A Concentric Analysis of the Impact of Urbanization on the Threatened European Tree Frog in an Agricultural Landscape. Conservation Biology, 2004, 18, 1599-1606.	4.7	90
17	HOMOLOGOUS SEX CHROMOSOMES IN THREE DEEPLY DIVERGENT ANURAN SPECIES. Evolution; International Journal of Organic Evolution, 2013, 67, 2434-2440.	2.3	77
18	A VERTEBRATE REPRODUCTIVE SYSTEM INVOLVING THREE PLOIDY LEVELS: HYBRID ORIGIN OF TRIPLOIDS IN A CONTACT ZONE OF DIPLOID AND TETRAPLOID PALEARCTIC GREEN TOADS (BUFO VIRIDIS SUBGROUP)*. Evolution; International Journal of Organic Evolution, 2010, 64, 944-959.	2.3	63

#	Article	IF	CITATIONS
19	Sex-Chromosome Recombination in Common Frogs Brings Water to the Fountain-of-Youth. Molecular Biology and Evolution, 2018, 35, 942-948.	8.9	63
20	Are glacial refugia hotspots of speciation and cytonuclear discordances? Answers from the genomic phylogeography of Spanish common frogs. Molecular Ecology, 2020, 29, 986-1000.	3.9	63
21	WHAT USES ARE MATING TYPES? THE "DEVELOPMENTAL SWITCH―MODEL. Evolution; International Journal of Organic Evolution, 2012, 66, 947-956.	2.3	60
22	Genetic Bottlenecks Driven by Population Disconnection. Conservation Biology, 2010, 24, 1596-1605.	4.7	59
23	Cryptic recombination in the everâ€young sex chromosomes of <scp>H</scp> ylid frogs. Journal of Evolutionary Biology, 2012, 25, 1947-1954.	1.7	57
24	Low rates of X‥ recombination, not turnovers, account for homomorphic sex chromosomes in several diploid species of Palearctic green toads (<i>Bufo viridis</i> subgroup). Journal of Evolutionary Biology, 2013, 26, 674-682.	1.7	57
25	Sex-Chromosome Homomorphy in Palearctic Tree Frogs Results from Both Turnovers and X–Y Recombination. Molecular Biology and Evolution, 2015, 32, 2328-2337.	8.9	57
26	Random sex determination: When developmental noise tips the sex balance. BioEssays, 2016, 38, 1218-1226.	2.5	57
27	Extreme heterochiasmy and nascent sex chromosomes in European tree frogs. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1577-1585.	2.6	55
28	Strong reproductive barriers in a narrow hybrid zone of West-Mediterranean green toads (Bufo) Tj ETQq0 0 0 rg	BT <u> O</u> verlo	ock 10 Tf 50 3
29	Evolutionary melting pots: a biodiversity hotspot shaped by ring diversifications around the Black Sea in the Eastern tree frog (<i>Hyla orientalis</i>). Molecular Ecology, 2016, 25, 4285-4300.	3.9	53
30	Phylogeography of a cryptic speciation continuum in Eurasian spadefoot toads (<i>Pelobates</i>). Molecular Ecology, 2019, 28, 3257-3270.	3.9	50
31	Integrating hybrid zone analyses in species delimitation: lessons from two anuran radiations of the Western Mediterranean. Heredity, 2020, 124, 423-438.	2.6	50
32	Highâ€density linkage maps fail to detect any genetic component to sex determination in a <i>Rana temporaria</i> family. Journal of Evolutionary Biology, 2016, 29, 220-225.	1.7	49
33	Simultaneous Mendelian and clonal genome transmission in a sexually reproducing, all-triploid vertebrate. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1293-1299.	2.6	47
34	Withinâ€population polymorphism of sexâ€determination systems in the common frog (<i><scp>R</scp>ana temporaria</i>). Journal of Evolutionary Biology, 2013, 26, 1569-1577.	1.7	47
35	THE EVOLUTION OF XY RECOMBINATION: SEXUALLY ANTAGONISTIC SELECTION VERSUS DELETERIOUS MUTATION LOAD. Evolution; International Journal of Organic Evolution, 2012, 66, 3155-3166.	2.3	46
36	Conservation phylogeography: does historical diversity contribute to regional vulnerability in <scp>E</scp> uropean tree frogs (<i><scp>H</scp>yla arborea</i>)?. Molecular Ecology, 2013, 22, 5669-5684.	3.9	45

#	Article	IF	Citations
37	Mass of genes rather than master genes underlie the genomic architecture of amphibian speciation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	45
38	Timeframe of speciation inferred from secondary contact zones in the European tree frog radiation (Hyla arborea group). BMC Evolutionary Biology, 2015, 15, 155.	3.2	44
39	Identifying homomorphic sex chromosomes from wildâ€caught adults with limited genomic resources. Molecular Ecology Resources, 2017, 17, 752-759.	4.8	44
40	Geographic variation in sexâ€chromosome differentiation in the common frog (<i><scp>R</scp>ana) Tj ETQq0 (</i>	0 0 ggBT /0	Overlock 10 T
41	Expanding the classical paradigm: what we have learnt from vertebrates about sex chromosome evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200097.	4.0	43
42	Multiscale determinants of tree frog (Hyla arborea L.) calling ponds in western Switzerland. Biodiversity and Conservation, 2004, 13, 2227-2235.	2.6	42
43	Phylogeography reveals an ancient cryptic radiation in East-Asian tree frogs (Hyla japonica group) and complex relationships between continental and island lineages. BMC Evolutionary Biology, 2016, 16, 253.	3.2	42
44	Individual reproductive success and effective population size in the greater white–toothed shrewCrocidura russula. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 701-705.	2.6	41
45	Sex chromosome turnovers and genetic drift: a simulation study. Journal of Evolutionary Biology, 2018, 31, 1413-1419.	1.7	40
46	A Sex-Specific Marker Reveals Male Heterogamety in European Tree Frogs. Molecular Biology and Evolution, 2006, 23, 1104-1106.	8.9	39
47	Inferring the degree of incipient speciation in secondary contact zones of closely related lineages of Palearctic green toads (Bufo viridis subgroup). Heredity, 2014, 113, 9-20.	2.6	38
48	Sex-chromosome differentiation and †sex races†in the common frog (Rana temporaria). Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142726.	2.6	35
49	Effect of biogeographic history on population vulnerability in European amphibians. Conservation Biology, 2015, 29, 1235-1241.	4.7	35
50	Empirical evidence for large X-effects in animals with undifferentiated sex chromosomes. Scientific Reports, 2016, 6, 21029.	3.3	35
51	Multiple origins of invasive and â€~native' water frogs (<i>Pelophylax</i> spp.) in Switzerland. Biological Journal of the Linnean Society, 2014, 112, 442-449.	1.6	34
52	OPPORTUNITY FOR SEXUAL SELECTION AND EFFECTIVE POPULATION SIZE IN THE LEK-BREEDING EUROPEAN TREEFROG (<i>HYLA ARBOREA</i>) Evolution; International Journal of Organic Evolution, 2009, 63, 674-683.	2.3	30
53	A reciprocal translocation radically reshapes sexâ€linked inheritance in the common frog. Molecular Ecology, 2019, 28, 1877-1889.	3.9	30
54	The genetic contribution to sex determination and number of sex chromosomes vary among populations of common frogs (Rana temporaria). Heredity, 2016, 117, 25-32.	2.6	29

#	Article	IF	CITATIONS
55	A cryptic heterogametic transition revealed by sexâ€linked DNA markers in Palearctic green toads. Journal of Evolutionary Biology, 2011, 24, 1064-1070.	1.7	27
56	Trans-species variation in <i>Dmrt1</i> is associated with sex determination in four European tree-frog species. Evolution; International Journal of Organic Evolution, 2016, 70, 840-847.	2.3	27
57	<i>Dmrt1</i> polymorphism and sexâ€chromosome differentiation inÂ <i>Rana temporaria</i> Molecular Ecology, 2017, 26, 4897-4905.	3.9	27
58	Stronger transferability but lower variability in transcriptomic―than in anonymous microsatellites: evidence from <scp>H</scp> ylid frogs. Molecular Ecology Resources, 2014, 14, 716-725.	4.8	26
59	GOOD GENES DRIVE FEMALE CHOICE FOR MATING PARTNERS IN THE LEK-BREEDING EUROPEAN TREEFROG. Evolution; International Journal of Organic Evolution, 2010, 64, 108-115.	2.3	25
60	Sex-chromosome differentiation parallels postglacial range expansion in European tree frogs (<i>Hyla) Tj ETQq0</i>	0 0 rgBT /	Overlock 10 1
61	Heterozygosity–fitness correlations among wild populations of European tree frog (<i>Hyla) Tj ETQq1 1 0.784</i>	314. ₃ . ₉ gBT	/Oyerlock 10
62	Cryptic invasion of Italian pool frogs (Pelophylax bergeri) across Western Europe unraveled by multilocus phylogeography. Biological Invasions, 2017, 19, 1407-1420.	2.4	24
63	Evolutionary and developmental dynamics of sex-biased gene expression in common frogs with proto-Y chromosomes. Genome Biology, 2018, 19, 156.	8.8	24
64	Tissue Specificity and Dynamics of Sex-Biased Gene Expression in a Common Frog Population with Differentiated, Yet Homomorphic, Sex Chromosomes. Genes, 2018, 9, 294.	2.4	24
65	Sex-chromosome evolution in frogs: what role for sex-antagonistic genes?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200094.	4.0	24
66	Phylogeography of Aegean green toads (Bufo viridis subgroup): continental hybrid swarm vs. insular diversification with discovery of a new island endemic. BMC Evolutionary Biology, 2018, 18, 67.	3.2	23
67	<i>Dmrt1</i> polymorphism covaries with sexâ€determination patterns in <i>Rana temporaria</i> Ecology and Evolution, 2016, 6, 5107-5117.	1.9	22
68	Hybridization and introgression between toads with different sex chromosome systems. Evolution Letters, 2020, 4, 444-456.	3.3	22
69	The effect of phylogeographic history on species boundaries: a comparative framework in Hyla tree frogs. Scientific Reports, 2020, 10, 5502.	3.3	21
70	Massive genetic introgression in threatened northern crested newts (Triturus cristatus) by an invasive congener (T. carnifex) in Western Switzerland. Conservation Genetics, 2016, 17, 839-846.	1.5	20
71	Are invasive marsh frogs (Pelophylax ridibundus) replacing the native P. lessonae/P. esculentus hybridogenetic complex in Western Europe? Genetic evidence from a field study. Conservation Genetics, 2014, 15, 869-878.	1.5	19
72	Impact of deleterious mutations, sexually antagonistic selection, and mode of recombination suppression on transitions between male and female heterogamety. Heredity, 2019, 123, 419-428.	2.6	19

#	Article	IF	CITATIONS
73	Introgressive hybridization of threatened European tree frogs (Hyla arborea) by introduced H. intermedia in Western Switzerland. Conservation Genetics, 2015, 16, 1507-1513.	1.5	18
74	Origin and genome evolution of polyploid green toads in Central Asia: evidence from microsatellite markers. Heredity, 2015, 114, 300-308.	2.6	18
7 5	Profound genetic divergence and asymmetric parental genome contributions as hallmarks of hybrid speciation in polyploid toads. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172667.	2.6	18
76	Sexâ€antagonistic genes, <scp>XY</scp> recombination and feminized Y chromosomes. Journal of Evolutionary Biology, 2018, 31, 416-427.	1.7	18
77	Recombination is suppressed and variability reduced in a nascent Y chromosome. Journal of Evolutionary Biology, 2007, 20, 1182-1188.	1.7	16
78	Isolation and characterization of microsatellite loci for the European tree frog (<i>Hyla) Tj ETQq0 0 0 rgBT /Overlo</i>	ock 10 Tf	50 _{.16} 542 Td (ar
79	Maintenance of biodiversity in vineyardâ€dominated landscapes: a case study on larval salamanders. Animal Conservation, 2012, 15, 136-141.	2.9	16
80	Reaching the edge of the speciation continuum: hybridization between three sympatric species of <i>Hyla </i> tree frogs. Biological Journal of the Linnean Society, 2019, 126, 743-750.	1.6	16
81	When Sex Chromosomes Recombine Only in the Heterogametic Sex: Heterochiasmy and Heterogamety in <i>Hyla</i> Tree Frogs. Molecular Biology and Evolution, 2021, 38, 192-200.	8.9	15
82	Viability and Management of an Endangered Capercaillie (Tetrao urogallus) Metapopulation in the Jura Mountains, Western Switzerland. Biodiversity and Conservation, 2006, 15, 2017-2032.	2.6	14
83	ON METAPOPULATION RESISTANCE TO DRIFT AND EXTINCTION. Ecology, 2006, 87, 1844-1855.	3.2	13
84	Maintenance of Ancestral Sex Chromosomes in Palearctic Tree Frogs: Direct Evidence from & lt; b> & lt; lb & gt; & lb & gt; & lt; lb & gt;	2.0	13
85	Diversification and speciation in tree frogs from the Maghreb (Hyla meridionalis sensu lato), with description of a new African endemic. Molecular Phylogenetics and Evolution, 2019, 134, 291-299.	2.7	13
86	Meiosis reveals the early steps in the evolution of a neo-XY sex chromosome pair in the African pygmy mouse Mus minutoides. PLoS Genetics, 2020, 16, e1008959.	3.5	13
87	A Key Transcription Cofactor on the Nascent Sex Chromosomes of European Tree Frogs (Hyla) Tj ETQq1 1 0.7845	314.pgBT /	Overlock 101
88	Phylogeography, more than elevation, accounts for sex chromosome differentiation in Swiss populations of the common frog ($\langle i \rangle$ Rana temporaria $\langle i \rangle$)*. Evolution; International Journal of Organic Evolution, 2020, 74, 644-654.	2.3	11
89	No evidence that Yâ€chromosome differentiation affects male fitness in a Swiss population of common frogs. Journal of Evolutionary Biology, 2020, 33, 401-409.	1.7	11
90	The contribution of patch topology and demographic parameters to population viability analysis predictions: the case of the European tree frog. Population Ecology, 2006, 48, 353-361.	1.2	10

#	Article	IF	CITATIONS
91	Range-Wide Sex-Chromosome Sequence Similarity Supports Occasional XY Recombination in European Tree Frogs (Hyla arborea). PLoS ONE, 2014, 9, e97959.	2.5	10
92	Dobzhansky-Muller incompatibilities, dominance drive, and sex-chromosome introgression at secondary contact zones: A simulation study. Evolution; International Journal of Organic Evolution, 2018, 72, 1350-1361.	2.3	10
93	First-generation linkage map for the European tree frog (Hyla arborea) with utility in congeneric species. BMC Research Notes, 2014, 7, 850.	1.4	9
94	Thirteen polymorphic microsatellite markers for the European green toad Bufo viridis viridis, a declining amphibian species. Conservation Genetics Resources, 2011, 3, 311-313.	0.8	7
95	New polymorphic microsatellite markers and development of mitotyping primers for West Mediterranean green toad species (<i>Bufo viridis</i> subgroup). Molecular Ecology Resources, 2009, 9, 1138-1140.	4.8	6
96	Social systems: demographic and genetic issues. Molecular Ecology, 2012, 21, 443-446.	3.9	6
97	Capture and return of sexual genomes by hybridogenetic frogs provides clonal genome enrichment in a sexual species. Scientific Reports, 2021, 11, 1633.	3.3	6
98	Identification of ancestral sex chromosomes in the frog <i>Glandirana rugosa</i> bearing <scp>XXâ€XY</scp> and <scp>ZZâ€ZW</scp> sexâ€determining systems. Molecular Ecology, 2022, 31, 3859-3870.	3.9	6
99	Invasion and eradication of a competitively superior species in heterogeneous landscapes. Ecological Modelling, 2011, 222, 398-406.	2.5	5
100	Polymorphism at a Sex-Linked Transcription Cofactor in European Tree Frogs (Hyla arborea): Sex-Antagonistic Selection or Neutral Processes?. Evolutionary Biology, 2011, 38, 208-213.	1.1	5
101	Discovery of a Pelophylax saharicus (Anura, Ranidae) population in Southern France: a new potentially invasive species of water frogs in Europe. Amphibia - Reptilia, 2021, 42, 427-442.	0.5	5
102	On tree frog cryptozoology and systematics – response to Y. Werner. Molecular Phylogenetics and Evolution, 2010, 57, 957-958.	2.7	4
103	Development and cross-amplification of thirty microsatellite loci in five diploid and polyploid Central Asian species of Palearctic green toads (Bufo viridis subgroup). Conservation Genetics Resources, 2013, 5, 243-249.	0.8	3
104	ECOLOGICAL-NICHE FACTOR ANALYSIS: HOW TO COMPUTE HABITAT-SUITABILITY MAPS WITHOUT ABSENCE DATA?. , 2002, 83, 2027.		3
105	Evolutionary correlates of sex-determination systems. , 2014, , 115-132.		2