
James H Westwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/61063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An artificial host Âsystem enables the obligate parasite <i>Cuscuta campestris</i> to grow and reproduce in vitro. Plant Physiology, 2022, 189, 687-702.	4.8	11
2	Mobile Host mRNAs Are Translated to Protein in the Associated Parasitic Plant Cuscuta campestris. Plants, 2022, 11, 93.	3.5	11
3	Plasma membrane phylloquinone biosynthesis in nonphotosynthetic parasitic plants. Plant Physiology, 2021, 185, 1443-1456.	4.8	8
4	Plant Biology: Genome Reveals Secrets of the Alien Within. Current Biology, 2021, 31, R241-R243.	3.9	2
5	Into the weeds: new insights in plant stress. Trends in Plant Science, 2021, 26, 1050-1060.	8.8	17
6	A new race of sunflower broomrape (Orobanche cumana) with a wider host range due to changes in seed response to strigolactones. Weed Science, 2020, 68, 134-142.	1.5	9
7	Multiple immunity-related genes control susceptibility of <i>Arabidopsis thaliana</i> to the parasitic weed <i>Phelipanche aegyptiaca</i> . PeerJ, 2020, 8, e9268.	2.0	7
8	Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants. Nature Plants, 2019, 5, 991-1001.	9.3	72
9	Comparative Metabolomics of Early Development of the Parasitic Plants Phelipanche aegyptiaca and Triphysaria versicolor. Metabolites, 2019, 9, 114.	2.9	9
10	Molecular Dialog Between Parasitic Plants and Their Hosts. Annual Review of Phytopathology, 2019, 57, 279-299.	7.8	74
11	Weed Management in 2050: Perspectives on the Future of Weed Science. Weed Science, 2018, 66, 275-285.	1.5	203
12	MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature, 2018, 553, 82-85.	27.8	303
13	Interference and Control of ALS-Resistant Mouse-Ear Cress (Arabidopsis thaliana) in Winter Wheat. Weed Technology, 2018, 32, 671-677.	0.9	1
14	Identification of Differentially Methylated Sites with Weak Methylation Effects. Genes, 2018, 9, 75.	2.4	4
15	Host differentiation and variability of Orobanche crenata populations from legume species in Morocco as revealed by crossâ€infestation and molecular analysis. Pest Management Science, 2017, 73, 1753-1763.	3.4	18
16	RNA mobility in parasitic plant $\hat{a} \in $ host interactions. RNA Biology, 2017, 14, 450-455.	3.1	21
17	Sequencing and De Novo Assembly of the Toxicodendron radicans (Poison Ivy) Transcriptome. Genes, 2017, 8, 317.	2.4	19
18	Herbicide injury induces DNA methylome alterations in <i>Arabidopsis</i> . PeerJ, 2017, 5, e3560.	2.0	27

#	Article	IF	CITATIONS
19	Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7010-E7019.	7.1	85
20	RNA transport: Delivering the message. Nature Plants, 2015, 1, 15038.	9.3	6
21	Comparative Transcriptome Analyses Reveal Core Parasitism Genes and Suggest Gene Duplication and Repurposing as Sources of Structural Novelty. Molecular Biology and Evolution, 2015, 32, 767-790.	8.9	137
22	Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science, 2015, 349, 540-543.	12.6	255
23	Parasitic Plants <i>Striga</i> and <i>Phelipanche</i> Dependent upon Exogenous Strigolactones for Germination Have Retained Genes for Strigolactone Biosynthesis. American Journal of Plant Sciences, 2015. 06. 1151-1166.	0.8	12
24	Macromolecule exchange in Cuscuta–host plant interactions. Current Opinion in Plant Biology, 2015, 26, 20-25.	7.1	75
25	Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science, 2014, 345, 808-811.	12.6	234
26	<i><scp>S</scp>triga hermonthica <scp>MAX</scp>2</i> restores branching but not the <scp>V</scp> ery <scp>L</scp> ow <scp>F</scp> luence <scp>R</scp> esponse in the <i><scp>A</scp>rabidopsis thaliana max2</i> mutant. New Phytologist, 2014, 202, 531-541.	7.3	40
27	The Physiology of the Established Parasite–Host Association. , 2013, , 87-114.		37
28	Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species. BMC Evolutionary Biology, 2013, 13, 48.	3.2	39
29	Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression. BMC Plant Biology, 2013, 13, 9.	3.6	61
30	Optoperforation of single, intact Arabidopsis cells for uptake of extracellular dye-conjugated dextran. Optics Express, 2013, 21, 14662.	3.4	7
31	Quantification of tomato and <i>Arabidopsis</i> mobile <scp>RNA</scp> s trafficking into the parasitic plant <i>Cuscuta pentagona</i> . New Phytologist, 2013, 200, 1225-1233.	7.3	40
32	RNA trafficking in parasitic plant systems. Frontiers in Plant Science, 2012, 3, 203.	3.6	32
33	Seed ultrastructure and water absorption pathway of the root-parasitic plant Phelipanche aegyptiaca (Orobanchaceae). Annals of Botany, 2012, 109, 181-195.	2.9	34
34	The Parasitic Plant Genome Project: New Tools for Understanding the Biology of <i>Orobanche</i> and <i>Striga</i> . Weed Science, 2012, 60, 295-306.	1.5	106
35	The U.S. Witchweed Eradication Effort Turns 50: A Retrospective and Look-Ahead on Parasitic Weed Management. Weed Science, 2012, 60, 267-268.	1.5	23
36	Transformation and regeneration of the holoparasitic plant Phelipanche aegyptiaca. Plant Methods, 2011, 7, 36.	4.3	32

James H Westwood

#	Article	IF	CITATIONS
37	Transcriptomes of the Parasitic Plant Family Orobanchaceae Reveal Surprising Conservation of Chlorophyll Synthesis. Current Biology, 2011, 21, 2098-2104.	3.9	82
38	Movement of protein and macromolecules between host plants and the parasitic weed Phelipanche aegyptiaca Pers Plant Cell Reports, 2011, 30, 2233-2241.	5.6	49
39	The evolution of parasitism in plants. Trends in Plant Science, 2010, 15, 227-235.	8.8	417
40	Evolution of Weediness and Invasiveness: Charting the Course for Weed Genomics. Weed Science, 2009, 57, 451-462.	1.5	82
41	Weed Science Research and Funding: A Call to Action. Weed Science, 2009, 57, 442-448.	1.5	29
42	RNA translocation between parasitic plants and their hosts. Pest Management Science, 2009, 65, 533-539.	3.4	63
43	Functional Analysis of a Predicted Flavonol Synthase Gene Family in Arabidopsis Â. Plant Physiology, 2008, 147, 1046-1061.	4.8	217
44	Cross-Species Translocation of mRNA from Host Plants into the Parasitic Plant Dodder. Plant Physiology, 2007, 143, 1037-1043.	4.8	141
45	A New Mutation in Plant <i>ALS</i> Confers Resistance to Five Classes of ALS-Inhibiting Herbicides. Weed Science, 2007, 55, 83-90.	1.5	114
46	ALS resistance in several smooth pigweed (Amaranthus hybridus) biotypes. Weed Science, 2006, 54, 828-832.	1.5	43
47	Engineering Natural Products for Crop Resistance to Parasitic Weeds. ACS Symposium Series, 2006, , 220-232.	0.5	0
48	A peptide from insects protects transgenic tobacco from a parasitic weed. Transgenic Research, 2005, 14, 227-236.	2.4	35
49	Herbicide Seed Treatments for Control of Purple Witchweed (Striga hermonthica) in Sorghum and Millet. Weed Technology, 2005, 19, 629-635.	0.9	15
50	Host gene expression in response to Egyptian broomrape (Orobanche aegyptiaca). Weed Science, 2004, 52, 697-703.	1.5	31
51	Molecular Aspects of Host-Parasite Interactions. , 2004, , 177-198.		0
52	Influence of Clyphosate on Amino Acid Composition of Egyptian Broomrape [<i>Orobanche aegyptiaca</i> (Pers.)] and Selected Hosts. Journal of Agricultural and Food Chemistry, 2001, 49, 1524-1528.	5.2	3
53	Parasitic Plants Major Problem to Food Crops. Science, 2001, 293, 1434a-1434.	12.6	15
54	Characterization of theOrobanche–Arabidopsissystem for studying parasite–host interactions. Weed Science, 2000, 48, 742-748.	1.5	84

#	Article	IF	CITATIONS
55	Influence of nitrogen on germination and early development of broomrape (Orobanchespp.). Weed Science, 1999, 47, 2-7.	1.5	56
56	Expression of a Defense-Related 3-Hydroxy-3-Methylglutaryl CoA Reductase Gene in Response to Parasitization by Orobanche spp Molecular Plant-Microbe Interactions, 1998, 11, 530-536.	2.6	58

57 Cellular mechanisms influence differential glyphosate sensitivity in field bindweed (<i>Convolvulus) Tj ETQq1 1 0.784314 rg85/Overla