E Wolfgang Kuehn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6106046/publications.pdf

Version: 2024-02-01

28 papers

2,085 citations

394421 19 h-index 27 g-index

30 all docs 30 docs citations

times ranked

30

3457 citing authors

#	Article	IF	CITATIONS
1	TRPP2 and TRPV4 form a polymodal sensory channel complex. Journal of Cell Biology, 2008, 182, 437-447.	5.2	349
2	Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nature Cell Biology, 2010, 12, 1115-1122.	10.3	330
3	ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nature Genetics, 2013, 45, 951-956.	21.4	183
4	A highly conserved tyrosine of Tim-3 is phosphorylated upon stimulation by its ligand galectin-9. Biochemical and Biophysical Research Communications, 2006, 351, 571-576.	2.1	165
5	Primary-cilium-dependent autophagy controls epithelial cell volume in response to fluid flow. Nature Cell Biology, 2016, 18, 657-667.	10.3	127
6	mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney International, 2011, 79, 502-511.	5,2	124
7	Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly. Journal of Cell Biology, 2014, 207, 269-282.	5.2	115
8	Kidney injury molecule-1 expression in murine polycystic kidney disease. American Journal of Physiology - Renal Physiology, 2002, 283, F1326-F1336.	2.7	111
9	Differential role of Rab proteins in ciliary trafficking: Rab23 regulates Smoothened levels. Journal of Cell Science, 2010, 123, 1460-1467.	2.0	103
10	Ciliaâ€localized <scp>LKB</scp> 1 regulates chemokine signaling, macrophage recruitment, and tissue homeostasis in the kidney. EMBO Journal, 2018, 37, .	7.8	78
11	von Hippel-Lindau: A Tumor Suppressor Links Microtubules to Ciliogenesis and Cancer Development: Figure 1 Cancer Research, 2007, 67, 4537-4540.	0.9	57
12	The ciliary flow sensor and polycystic kidney disease. Nephrology Dialysis Transplantation, 2013, 28, 518-526.	0.7	45
13	The Rac1 regulator ELMO controls basal body migration and docking in multiciliated cells through interaction with Ezrin. Development (Cambridge), 2015, 142, 174-184.	2.5	45
14	A Cilia Independent Role of Ift88/Polaris during Cell Migration. PLoS ONE, 2015, 10, e0140378.	2.5	42
15	Ciliary calcium signaling is modulated by kidney injury molecule-1 (Kim1). Pflugers Archiv European Journal of Physiology, 2007, 453, 819-829.	2.8	32
16	Kinesin-2 mediates apical endosome transport during epithelial lumen formation. Cellular Logistics, 2014, 4, e28928.	0.9	30
17	Kidney injury molecule 1 (Kim1) is a novel ciliary molecule and interactor of polycystin 2. Biochemical and Biophysical Research Communications, 2007, 364, 861-866.	2.1	26
18	Kif3a Guides Microtubular Dynamics, Migration and Lumen Formation of MDCK Cells. PLoS ONE, 2013, 8, e62165.	2.5	23

#	Article	IF	CITATIONS
19	Loss of PKD1/polycystin-1 impairs lysosomal activity in a CAPN (calpain)-dependent manner. Autophagy, 2021, 17, 2384-2400.	9.1	22
20	Flow modulates centriole movements in tubular epithelial cells. Pflugers Archiv European Journal of Physiology, 2008, 456, 1025-1035.	2.8	21
21	Efficient genome editing of differentiated renal epithelial cells. Pflugers Archiv European Journal of Physiology, 2017, 469, 303-311.	2.8	17
22	Divergent function of polycystin 1 and polycystin 2 in cell size regulation. Biochemical and Biophysical Research Communications, 2020, 521, 290-295.	2.1	12
23	Tubular STAT3 Limits Renal Inflammation in Autosomal Dominant Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2020, 31, 1035-1049.	6.1	11
24	Prime time for polycystic kidney disease: does one shot of roscovitine bring the cure?. Nephrology Dialysis Transplantation, 2007, 22, 2133-2135.	0.7	9
25	The renal inflammatory network of nephronophthisis. Human Molecular Genetics, 2022, 31, 2121-2136.	2.9	5
26	Identification of pathological transcription in autosomal dominant polycystic kidney disease epithelia. Scientific Reports, 2021, 11, 15139.	3.3	1
27	Ift88, but not Kif3a, is required for establishment of the periciliary membrane compartment. Biochemical and Biophysical Research Communications, 2021, 584, 19-25.	2.1	1
28	The Lectin LecB Induces Patches with Basolateral Characteristics at the Apical Membrane to Promote Pseudomonas aeruginosa Host Cell Invasion. MBio, 2022, 13, e0081922.	4.1	1