
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6104873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation Study of Intravenous Adult Human Mesenchymal Stem Cells (Prochymal) After Acute Myocardial Infarction. Journal of the American College of Cardiology, 2009, 54, 2277-2286.	2.8	1,205
2	Mesenchymal stem cell perspective: cell biology to clinical progress. Npj Regenerative Medicine, 2019, 4, 22.	5.2	1,113
3	Comparison of Allogeneic vs Autologous Bone Marrow–Derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients With Ischemic Cardiomyopathy. JAMA - Journal of the American Medical Association, 2012, 308, 2369.	7.4	1,017
4	Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature, 2002, 416, 337-339.	27.8	724
5	Left Ventricular or Biventricular Pacing Improves Cardiac Function at Diminished Energy Cost in Patients With Dilated Cardiomyopathy and Left Bundle-Branch Block. Circulation, 2000, 102, 3053-3059.	1.6	704
6	Bone Marrow Mesenchymal Stem Cells Stimulate Cardiac Stem Cell Proliferation and Differentiation. Circulation Research, 2010, 107, 913-922.	4.5	659
7	Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nature Reviews Cardiology, 2021, 18, 169-193.	13.7	589
8	Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14022-14027.	7.1	529
9	Transendocardial Mesenchymal Stem Cells and Mononuclear Bone Marrow Cells for Ischemic Cardiomyopathy. JAMA - Journal of the American Medical Association, 2014, 311, 62.	7.4	471
10	Enhanced Effect of Combining Human Cardiac Stem Cells and Bone Marrow Mesenchymal Stem Cells to Reduce Infarct Size and to Restore Cardiac Function After Myocardial Infarction. Circulation, 2013, 127, 213-223.	1.6	375
11	NO/redox disequilibrium in the failing heart and cardiovascular system. Journal of Clinical Investigation, 2005, 115, 509-517.	8.2	307
12	Autologous Mesenchymal Stem Cells Produce Concordant Improvements in Regional Function, Tissue Perfusion, and Fibrotic Burden When Administered to Patients Undergoing Coronary Artery Bypass Grafting. Circulation Research, 2014, 114, 1302-1310.	4.5	305
13	Randomized Comparison of Allogeneic Versus Autologous Mesenchymal StemÂCells for Nonischemic DilatedÂCardiomyopathy. Journal of the American College of Cardiology, 2017, 69, 526-537.	2.8	297
14	Intramyocardial Stem Cell Injection in Patients With Ischemic Cardiomyopathy. Circulation Research, 2011, 108, 792-796.	4.5	286
15	Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiological Reviews, 2016, 96, 1127-1168.	28.8	251
16	Mesenchymal Stem Cell-Based Therapy for Cardiovascular Disease: Progress and Challenges. Molecular Therapy, 2018, 26, 1610-1623.	8.2	241
17	Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. European Heart Journal, 2009, 30, 2722-2732.	2.2	231
18	Cardiac phosphodiesterase 5 (cGMPâ€specific) modulates βâ€adrenergic signaling in vivo and is downâ€regulated in heart failure. FASEB Journal, 2001, 15, 1718-1726.	0.5	220

#	Article	IF	CITATIONS
19	Inosine to Increase Serum and Cerebrospinal Fluid Urate in Parkinson Disease. JAMA Neurology, 2014, 71, 141.	9.0	211
20	Allogeneic Human Mesenchymal Stem Cells in Patients With Idiopathic Pulmonary Fibrosis via Intravenous Delivery (AETHER). Chest, 2017, 151, 971-981.	0.8	186
21	Nitric Oxide Regulation of Myocardial Contractility and Calcium Cycling. Circulation Research, 2003, 92, 1322-1329.	4.5	183
22	In vivo murine left ventricular pressure-volume relations by miniaturized conductance micromanometry. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H1416-H1422.	3.2	176
23	Nitric oxide and excitation–contraction coupling. Journal of Molecular and Cellular Cardiology, 2003, 35, 719-729.	1.9	164
24	Route of Delivery Modulates the Efficacy of Mesenchymal Stem Cell Therapy for Myocardial Infarction. Circulation Research, 2017, 120, 1139-1150.	4.5	155
25	Early improvement in cardiac tissue perfusion due to mesenchymal stem cells. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2002-H2011.	3.2	152
26	Dose Comparison Study of Allogeneic Mesenchymal Stem Cells in Patients With Ischemic Cardiomyopathy (The TRIDENT Study). Circulation Research, 2017, 121, 1279-1290.	4.5	152
27	Nitroso–Redox Interactions in the Cardiovascular System. Circulation, 2006, 114, 1531-1544.	1.6	147
28	Nitroso–Redox Balance in the Cardiovascular System. New England Journal of Medicine, 2004, 351, 2112-2114.	27.0	145
29	Synergistic Effects of Combined Cell Therapy for Chronic Ischemic Cardiomyopathy. Journal of the American College of Cardiology, 2015, 66, 1990-1999.	2.8	133
30	Exosomal microRNA-21-5p Mediates Mesenchymal Stem Cell Paracrine Effects on Human Cardiac Tissue Contractility. Circulation Research, 2018, 122, 933-944.	4.5	129
31	Clinical Studies of Cell Therapy in Cardiovascular Medicine. Circulation Research, 2018, 123, 266-287.	4.5	129
32	Impaired S-Nitrosylation of the Ryanodine Receptor Caused by Xanthine Oxidase Activity Contributes to Calcium Leak in Heart Failure. Journal of Biological Chemistry, 2010, 285, 28938-28945.	3.4	126
33	Dynamic denitrosylation via <i>S</i> -nitrosoglutathione reductase regulates cardiovascular function. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4314-4319.	7.1	122
34	β3-adrenoceptor deficiency blocks nitric oxide–dependent inhibition of myocardial contractility. Journal of Clinical Investigation, 2000, 106, 697-703.	8.2	120
35	S-Nitrosylation of Cardiac Ion Channels. Journal of Cardiovascular Pharmacology, 2009, 54, 188-195.	1.9	119
36	cGMP-independent inotropic effects of nitric oxide and peroxynitrite donors: potential role for nitrosylation. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H1982-H1988.	3.2	118

#	ŧ	Article	IF	CITATIONS
3	57	Contribution of Caveolin Protein Abundance to Augmented Nitric Oxide Signaling in Conscious Dogs With Pacing-Induced Heart Failure. Circulation Research, 2000, 86, 1085-1092.	4.5	111
3	8	Allogeneic Mesenchymal Stem Cells Restore Endothelial Function in Heart Failure by Stimulating Endothelial Progenitor Cells. EBioMedicine, 2015, 2, 467-475.	6.1	111
3	9	Concise Review: Review and Perspective of Cell Dosage and Routes of Administration From Preclinical and Clinical Studies of Stem Cell Therapy for Heart Disease. Stem Cells Translational Medicine, 2016, 5, 186-191.	3.3	109
4	0	Allogeneic Mesenchymal Stem Cells Ameliorate Aging Frailty: A Phase II Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1513-1522.	3.6	107
4	1	Oxidative Stress and Apoptosis in Heart Failure Progression. Circulation Research, 2001, 89, 198-200.	4.5	105
4	2	<i>cKit</i> ⁺ cardiac progenitors of neural crest origin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13051-13056.	7.1	104
4	-3	Preclinical Studies of Stem Cell Therapy for Heart Disease. Circulation Research, 2018, 122, 1006-1020.	4.5	104
4	4	Association between serum uric acid and atrial fibrillation: A systematic review and meta-analysis. Heart Rhythm, 2014, 11, 1102-1108.	0.7	101
4	5	Sympathetic Reinnervation Is Required for Mammalian Cardiac Regeneration. Circulation Research, 2015, 117, 990-994.	4.5	97
4	6	Cardioprotective effects of growth hormone-releasing hormone agonist after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2604-2609.	7.1	95
4	7	Rationale and Design of the CONCERT-HF Trial (Combination of Mesenchymal and c-kit ⁺) Tj ETQq1 1	0.784314 4.5	4 _{ரீ} தா /Ove
4	8	Myocardial infarction and intramyocardial injection models in swine. Nature Protocols, 2012, 7, 1479-1496.	12.0	89
4	9	<i>S</i> -nitrosoglutathione reductase (CSNOR) enhances vasculogenesis by mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2834-2839.	7.1	89
5	60	A Phase <scp>II</scp> study of autologous mesenchymal stromal cells and câ€kit positive cardiac cells, alone or in combination, in patients with ischaemic heart failure: the <scp>CCTRN CONCERTâ€HF</scp> trial. European Journal of Heart Failure, 2021, 23, 661-674.	7.1	89
5	1	Mesenchymal Stem Cell Therapy for Cardiac Repair. Methods in Molecular Biology, 2010, 660, 65-84.	0.9	88
5	52	Allogeneic Cell Therapy. Circulation Research, 2015, 116, 12-15.	4.5	86
5	3	COVID-19 Endothelial Dysfunction Can Cause Erectile Dysfunction: Histopathological, Immunohistochemical, and Ultrastructural Study of the Human Penis. World Journal of Men?s Health, 2021, 39, 466.	3.3	86
5	64	Effect of Aging on Human Mesenchymal Stem Cell Therapy in Ischemic Cardiomyopathy Patients. Journal of the American College of Cardiology, 2015, 65, 125-132.	2.8	85

#	Article	IF	CITATIONS
55	Cell-based therapy to reduce mortality from COVID-19: Systematic review and meta-analysis of human studies on acute respiratory distress syndrome. Stem Cells Translational Medicine, 2020, 9, 1007-1022.	3.3	85
56	Inhibition of the SDF-1/CXCR4 Axis Attenuates Neonatal Hypoxia-Induced Pulmonary Hypertension. Circulation Research, 2009, 104, 1293-1301.	4.5	83
57	Efficacy and Dose-Dependent Safety of Intra-Arterial Delivery of Mesenchymal Stem Cells in a Rodent Stroke Model. PLoS ONE, 2014, 9, e93735.	2.5	83
58	Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering. Journal of the American College of Cardiology, 2017, 70, 766-775.	2.8	82
59	Stimulatory Effects of Mesenchymal Stem Cells on cKit + Cardiac Stem Cells Are Mediated by SDF1/CXCR4 and SCF/cKit Signaling Pathways. Circulation Research, 2016, 119, 921-930.	4.5	81
60	A Combination of Allogeneic Stem Cells Promotes Cardiac Regeneration. Journal of the American College of Cardiology, 2017, 70, 2504-2515.	2.8	76
61	Improved Mechanoenergetics and Cardiac Rest and Reserve Function of In Vivo Failing Heart by Calcium Sensitizer EMD-57033. Circulation, 2000, 101, 1040-1048.	1.6	72
62	Allogeneic Human Mesenchymal Stem Cell Infusions for Aging Frailty. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1505-1512.	3.6	71
63	Pim1 Kinase Overexpression Enhances ckit+ Cardiac Stem Cell Cardiac Repair Following Myocardial Infarction in Swine. Journal of the American College of Cardiology, 2016, 68, 2454-2464.	2.8	69
64	Rethinking Endothelial Dysfunction as a Crucial Target in Fighting Heart Failure. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2019, 3, 1-13.	2.4	68
65	Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics. Vaccines, 2021, 9, 94.	4.4	67
66	Ischemic cardiomyopathy: Endomyocardial biopsy and ventriculographic evaluation of patients with congestive failure, dilated cardiomyopathy and coronary artery disease. Journal of the American College of Cardiology, 1992, 20, 1318-1325.	2.8	63
67	Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4138-46.	7.1	63
68	Cardiac regeneration and stem cell therapy. Current Opinion in Organ Transplantation, 2008, 13, 536-542.	1.6	58
69	Activation of growth hormone releasing hormone (GHRH) receptor stimulates cardiac reverse remodeling after myocardial infarction (MI). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 559-563.	7.1	58
70	Synthesis of new potent agonistic analogs of growth hormone-releasing hormone (GHRH) and evaluation of their endocrine and cardiac activities. Peptides, 2014, 52, 104-112.	2.4	58
71	Mesenchymal Stem Cells as a Biological Drug for Heart Disease. Circulation Research, 2015, 117, 229-233.	4.5	56
72	Experimental and Computational Insight Into Human Mesenchymal Stem Cell Paracrine Signaling and Heterocellular Coupling Effects on Cardiac Contractility and Arrhythmogenicity. Circulation Research, 2017, 121, 411-423.	4.5	56

#	Article	IF	CITATIONS
73	Cigarette Smoke Initiates Oxidative Stress-Induced Cellular Phenotypic Modulation Leading to Cerebral Aneurysm Pathogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 610-621.	2.4	56
74	Mesenchymal Stem Cell Therapies in the Treatment of Musculoskeletal Diseases. PM and R, 2014, 6, 61-69.	1.6	55
75	Actions and Potential Therapeutic Applications of Growth Hormone–Releasing Hormone Agonists. Endocrinology, 2019, 160, 1600-1612.	2.8	51
76	Mesenchymal Stem Cells in Cardiology. Methods in Molecular Biology, 2016, 1416, 55-87.	0.9	50
77	Regulation of oxygen delivery to the body via hypoxic vasodilation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6254-6255.	7.1	46
78	Evaluation of Cell Therapy on Exercise Performance and Limb Perfusion in Peripheral Artery Disease. Circulation, 2017, 135, 1417-1428.	1.6	46
79	Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia. Respiratory Research, 2017, 18, 137.	3.6	46
80	Phase II Clinical Research Design in Cardiology. Circulation, 2013, 127, 1630-1635.	1.6	44
81	Growth hormone-releasing hormone attenuates cardiac hypertrophy and improves heart function in pressure overload-induced heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12033-12038.	7.1	44
82	<i>S</i> â€Nitrosoglutathione Reductase Deficiency Enhances the Proliferative Expansion of Adult Heart Progenitors and Myocytes Post Myocardial Infarction. Journal of the American Heart Association, 2015, 4, .	3.7	43
83	Study design and rationale for ELPIS: A phase I/IIb randomized pilot study of allogeneic human mesenchymal stem cell injection in patients with hypoplastic left heart syndrome. American Heart Journal, 2017, 192, 48-56.	2.7	38
84	Mesenchymal Stem Cell Therapy for Aging Frailty. Frontiers in Nutrition, 2018, 5, 108.	3.7	38
85	Alterations of tumor microenvironment by nitric oxide impedes castration-resistant prostate cancer growth. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11298-11303.	7.1	38
86	Rationale and design of the allogeneiC human mesenchymal stem cells (hMSC) in patients with aging fRAilTy via intravenoUS delivery (CRATUS) study: A phase I/II, randomized, blinded and placebo controlled trial to evaluate the safety and potential efficacy of allogeneic human mesenchymal stem cell infusion in patients with aging frailty. Oncotarget, 2016, 7, 11899-11912.	1.8	37
87	Agonists of growth hormone-releasing hormone stimulate self-renewal of cardiac stem cells and promote their survival. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17260-17265.	7.1	36
88	C-Kit+Cells Isolated from Developing Kidneys Are a Novel Population of Stem Cells with Regenerative Potential. Stem Cells, 2013, 31, 1644-1656.	3.2	33
89	Hydralazine and Organic Nitrates Restore Impaired Excitation-Contraction Coupling by Reducing Calcium Leak Associated with Nitroso-Redox Imbalance*. Journal of Biological Chemistry, 2013, 288, 6522-6533.	3.4	33
90	Cell-Based Therapy Restores Olfactory Function in an Inducible Model ofÂHyposmia. Stem Cell Reports, 2019, 12, 1354-1365.	4.8	33

#	Article	IF	CITATIONS
91	Sex differences by design and outcome in the Safety of Urate Elevation in PD (SURE-PD) trial. Neurology, 2019, 93, e1328-e1338.	1.1	33
92	NADPH oxidase-2 inhibition restores contractility and intracellular calcium handling and reduces arrhythmogenicity in dystrophic cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H710-H721.	3.2	32
93	Tumor Suppressors RB1 and CDKN2a Cooperatively Regulate Cell-Cycle Progression and Differentiation During Cardiomyocyte Development and Repair. Circulation Research, 2019, 124, 1184-1197.	4.5	32
94	Dual Labeling Biotin Switch Assay to Reduce Bias Derived From Different Cysteine Subpopulations. Circulation Research, 2015, 117, 846-857.	4.5	31
95	Long Term Ablation of Protein Kinase A (PKA)-mediated Cardiac Troponin I Phosphorylation Leads to Excitation-Contraction Uncoupling and Diastolic Dysfunction in a Knock-in Mouse Model of Hypertrophic Cardiomyopathy. Journal of Biological Chemistry, 2014, 289, 23097-23111.	3.4	29
96	Xanthine Oxidase Inhibitors in Heart Failure. Circulation, 2015, 131, 1741-1744.	1.6	29
97	Comparison of Mesenchymal Stem Cell Efficacy in Ischemic Versus Nonischemic Dilated Cardiomyopathy. Journal of the American Heart Association, 2018, 7, .	3.7	29
98	Intravenous administration of mesenchymal stem cells reduces Tau phosphorylation and inflammation in the 3xTg-AD mouse model of Alzheimer's disease. Experimental Neurology, 2021, 341, 113706.	4.1	29
99	COVID19: A Systematic Approach to Early Identification and Healthcare Worker Protection. Frontiers in Public Health, 2020, 8, 205.	2.7	28
100	Subcutaneous Leydig Stem Cell Autograft: A Promising Strategy to Increase Serum Testosterone. Stem Cells Translational Medicine, 2019, 8, 58-65.	3.3	27
101	Exhaled nitric oxide: a marker of pulmonary hemodynamics in heart failure. Journal of the American College of Cardiology, 2002, 40, 1114-1119.	2.8	26
102	Growth Hormone–Releasing Hormone Agonists Reduce Myocardial Infarct Scar in Swine With Subacute Ischemic Cardiomyopathy. Journal of the American Heart Association, 2015, 4, .	3.7	26
103	Olfactory basal stem cells: contribution of Polycomb group proteins to renewal in a novel c-Kit+ culture model and <i>in vivo</i> . Development (Cambridge), 2016, 143, 4394-4404.	2.5	25
104	Allogeneic Mesenchymal Cell Therapy in Anthracycline-Induced Cardiomyopathy HeartÂFailure Patients. JACC: CardioOncology, 2020, 2, 581-595.	4.0	24
105	What Is the Future of Cell-Based Therapy for Acute Myocardial Infarction. Circulation Research, 2017, 120, 252-255.	4.5	23
106	PDGFRA defines the mesenchymal stem cell Kaposi's sarcoma progenitors by enabling KSHV oncogenesis in an angiogenic environment. PLoS Pathogens, 2019, 15, e1008221.	4.7	23
107	New therapeutic approach to heart failure due to myocardial infarction based on targeting growth hormone-releasing hormone receptor. Oncotarget, 2015, 6, 9728-9739.	1.8	23
108	Effects of Transendocardial Stem Cell Injection on Ventricular Proarrhythmia in Patients with Ischemic Cardiomyopathy: Results from the POSEIDON and TAC-HFT Trials. Stem Cells Translational Medicine, 2017, 6, 1366-1372.	3.3	22

#	Article	IF	CITATIONS
109	Differentiation potential of individual olfactory câ€Kit+ progenitors determined via multicolor lineage tracing. Developmental Neurobiology, 2016, 76, 241-251.	3.0	21
110	Murine Models Demonstrate Distinct Vasculogenic and Cardiomyogenic cKit ⁺ Lineages in the Heart. Circulation Research, 2016, 118, 382-387.	4.5	21
111	Physiological and hypoxic oxygen concentration differentially regulates human c-Kit ⁺ cardiac stem cell proliferation and migration. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1509-H1519.	3.2	20
112	Mesenchymal Stem Cell Secretion of SDF-1α Modulates Endothelial Function in Dilated Cardiomyopathy. Frontiers in Physiology, 2019, 10, 1182.	2.8	20
113	Genetic determinants of responsiveness to mesenchymal stem cell injections in non-ischemic dilated cardiomyopathy. EBioMedicine, 2019, 48, 377-385.	6.1	20
114	Translational development of mesenchymal stem cell therapy for cardiovascular diseases. Texas Heart Institute Journal, 2009, 36, 145-7.	0.3	20
115	Rejuvenation of Senescent Endothelial Progenitor Cells by Extracellular Vesicles Derived From Mesenchymal Stromal Cells. JACC Basic To Translational Science, 2020, 5, 1127-1141.	4.1	19
116	GSNOR Deficiency Enhances <i>In Situ</i> Skeletal Muscle Strength, Fatigue Resistance, and RyR1 S-Nitrosylation Without Impacting Mitochondrial Content and Activity. Antioxidants and Redox Signaling, 2017, 26, 165-181.	5.4	18
117	Stem cell factor improves lung recovery in rats following neonatal hyperoxia-induced lung injury. Pediatric Research, 2013, 74, 682-688.	2.3	17
118	Rationale and Design of the SENECA (StEm cell iNjECtion in cAncer survivors) Trial. American Heart Journal, 2018, 201, 54-62.	2.7	17
119	Clinical and Neurophysiological Changes after Targeted Intrathecal Injections of Bone Marrow Stem Cells in a C3 Tetraplegic Subject. Journal of Neurotrauma, 2019, 36, 500-516.	3.4	17
120	Clinical-based Cell Therapies for Heart Disease—Current and Future State. Rambam Maimonides Medical Journal, 2020, 11, e0015.	1.0	17
121	Results and insights from a phase I clinical trial of Lomecelâ€8 for Alzheimer's disease. Alzheimer's and Dementia, 2023, 19, 261-273.	0.8	17
122	Interaction Between Neuronal Nitric Oxide Synthase Signaling and Temperature Influences Sarcoplasmic Reticulum Calcium Leak. Circulation Research, 2015, 116, 46-55.	4.5	16
123	Kidney-derived c-kit+ progenitor/stem cells contribute to podocyte recovery in a model of acute proteinuria. Scientific Reports, 2018, 8, 14723.	3.3	16
124	Allogeneic mesenchymal stem cell therapy: A regenerative medicine approach to geroscience. Aging Medicine (Milton (N S W)), 2019, 2, 142-146.	2.1	16
125	Attenuation of frailty in older adults with mesenchymal stem cells. Mechanisms of Ageing and Development, 2019, 181, 47-58.	4.6	16
126	Secondary Polycythemia in Men Receiving Testosterone Therapy Increases Risk of Major Adverse Cardiovascular Events and Venous Thromboembolism in the First Year of Therapy. Journal of Urology, 2022, 207, 1295-1301.	0.4	16

#	Article	IF	CITATIONS
127	Kidney-Derived c-Kit+ Cells Possess Regenerative Potential. Stem Cells Translational Medicine, 2018, 7, 317-324.	3.3	14
128	Intravenous Stem Cell Therapy for High-Grade Aneurysmal Subarachnoid Hemorrhage: Case Report and Literature Review. World Neurosurgery, 2019, 128, 573-575.	1.3	13
129	Reparative cell therapy for the heart: critical internal appraisal of the field in response to recent controversies. ESC Heart Failure, 2021, 8, 2306-2309.	3.1	13
130	Efficacy and Safety of MSC Cell Therapies for Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. Stem Cells Translational Medicine, 2022, 11, 688-703.	3.3	13
131	Mesenchymal Stem Cell-derived Extracellular Vesicles Prevent Experimental Bronchopulmonary Dysplasia Complicated By Pulmonary Hypertension. Stem Cells Translational Medicine, 2022, 11, 828-840.	3.3	13
132	The physiological response to cardiovascular 'orphan' G protein-coupled receptor agonists. Nature Medicine, 1999, 5, 1241-1242.	30.7	12
133	Growth hormone-releasing hormone agonists ameliorate chronic kidney disease-induced heart failure with preserved ejection fraction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
134	The Presence of Cholesteryl Ester Transfer Protein (CETP) in Endothelial Cells Generates Vascular Oxidative Stress and Endothelial Dysfunction. Biomolecules, 2021, 11, 69.	4.0	11
135	Nitric Oxide and Cardiobiologyâ€Methods for Intact Hearts and Isolated Myocytes. Methods in Enzymology, 2008, 441, 369-392.	1.0	10
136	Emerging Applications of Stem Cell and Regenerative Medicine to Sports Injuries. Orthopaedic Journal of Sports Medicine, 2014, 2, 232596711351993.	1.7	10
137	Cell Therapy. Circulation Research, 2015, 117, 659-661.	4.5	10
138	Antagonism of stem cell factor/c-kit signaling attenuates neonatal chronic hypoxia-induced pulmonary vascular remodeling. Pediatric Research, 2016, 79, 637-646.	2.3	10
139	A novel cardiomyogenic role for Isl1 ⁺ neural crest cells in the inflow tract. Science Advances, 2020, 6, .	10.3	10
140	The Effect of Transendocardial Stem Cell Injection on Erectile Function in Men with Cardiomyopathy: Results From the TRIDENT, POSEIDON, and TAC-HFT Trials. Journal of Sexual Medicine, 2020, 17, 695-701.	0.6	10
141	The impact of patient sex on the response to intramyocardial mesenchymal stem cell administration in patients with non-ischaemic dilated cardiomyopathy. Cardiovascular Research, 2020, 116, 2131-2141.	3.8	10
142	Evidence for a retinal progenitor cell in the postnatal and adult mouse. Stem Cell Research, 2017, 23, 20-32.	0.7	9
143	S-Nitrosoglutathione Reductase (GSNOR) Deficiency Results in Secondary Hypogonadism. Journal of Sexual Medicine, 2018, 15, 654-661.	0.6	9
144	Comparative Effects of Bone Marrow-derived Versus Umbilical Cord Tissue Mesenchymal Stem Cells in an Experimental Model of Bronchopulmonary Dysplasia. Stem Cells Translational Medicine, 2022, 11, 189-199.	3.3	9

#	Article	IF	CITATIONS
145	Synthetic growth hormone-releasing hormone agonist ameliorates the myocardial pathophysiology characteristic of heart failure with preserved ejection fraction. Cardiovascular Research, 2023, 118, 3586-3601.	3.8	9
146	New insights into cellâ€based therapy for heart failure from the CHARTâ€1 study. European Journal of Heart Failure, 2017, 19, 1530-1533.	7.1	8
147	Demographic representation in clinical trials for cell-based therapy. Contemporary Clinical Trials Communications, 2021, 21, 100702.	1.1	8
148	Improvement of cardiac and systemic function in old mice by agonist of growth hormoneâ€releasing hormone. Journal of Cellular Physiology, 2021, 236, 8197-8207.	4.1	8
149	Mechanism of Action of Mesenchymal Stem Cells (MSCs): impact of delivery method. Expert Opinion on Biological Therapy, 2022, 22, 449-463.	3.1	8
150	The quest for a successful cell-based therapeutic approach for heart failure. European Heart Journal, 2017, 38, 661-664.	2.2	7
151	Next-Generation Stem Cell Therapy: Genetically Modified Mesenchymal Stem Cells for Cardiac Repair. Cardiovascular Drugs and Therapy, 2017, 31, 5-7.	2.6	7
152	Progenitor/Stem Cell Delivery by Suprarenal Aorta Route in Acute Kidney Injury. Cell Transplantation, 2019, 28, 1390-1403.	2.5	7
153	Leptin secreted from testicular microenvironment modulates hedgehog signaling to augment the endogenous function of Leydig cells. Cell Death and Disease, 2022, 13, 208.	6.3	7
154	Sâ€Nitrosoglutathione Reductase Deficiency Causes Aberrant Placental Sâ€Nitrosylation and Preeclampsia. Journal of the American Heart Association, 2022, 11, e024008.	3.7	7
155	Bone Marrow Mononuclear Cell Therapy and Granulocyte Colony-Stimulating Factor for Acute Myocardial Infarction. Journal of the American College of Cardiology, 2015, 65, 2383-2387.	2.8	6
156	Recommendations for nomenclature and definition of cell products intended for human cardiovascular use. Cardiovascular Research, 2022, 118, 2428-2436.	3.8	6
157	Autologous Cardiac Stem Cell Injection in Patients with Hypoplastic Left Heart Syndrome (CHILD) Tj ETQq1 1 0.	.784314 rş 1.3	gBT /Overlock
158	Kaposi's sarcoma herpesvirus activates the hypoxia response to usurp HIF2α-dependent translation initiation for replication and oncogenesis. Cell Reports, 2021, 37, 110144.	6.4	6
159	Reduced left ventricular dimension and normalized atrial natriuretic hormone level after repair of aortic coarctation in an adult. Clinical Cardiology, 1999, 22, 233-235.	1.8	5
160	Hypoxic Stress Decreases c-Myc Protein Stability in Cardiac Progenitor Cells Inducing Quiescence and Compromising Their Proliferative and Vasculogenic Potential. Scientific Reports, 2017, 7, 9702.	3.3	5
161	Age Induced Nitroso-Redox Imbalance Leads to Subclinical Hypogonadism in Male Mice. Frontiers in Endocrinology, 2019, 10, 190.	3.5	5
162	Systemic delivery of large-scale manufactured Wharton's Jelly mesenchymal stem cell-derived		4

extracellular vesicles improves cardiac function after myocardial infarction. , 2022, 2, . 162

#	Article	IF	CITATIONS
163	Meta-Analysis of Percutaneous Endomyocardial Cell Therapy in Patients with Ischemic Heart Failure by Combination of Individual Patient Data (IPD) of ACCRUE and Publication-Based Aggregate Data. Journal of Clinical Medicine, 2022, 11, 3205.	2.4	4
164	Col4a3-/- Mice on Balb/C Background Have Less Severe Cardiorespiratory Phenotype and SGLT2 Over-Expression Compared to 129x1/SvJ and C57Bl/6 Backgrounds. International Journal of Molecular Sciences, 2022, 23, 6674.	4.1	4
165	Perspectives on the Evolution of Stem Cell Therapy for Heart Failure. EBioMedicine, 2015, 2, 1838-1839.	6.1	3
166	Cell Therapy Augments Myocardial Perfusion and Improves Quality of Life in Patients With Refractory Angina. Circulation Research, 2016, 118, 911-915.	4.5	3
167	Interdisciplinary Stem Cell Institute at the University of Miami Miller School of Medicine. Circulation Research, 2018, 123, 1030-1032.	4.5	3
168	A metaâ€analysis of arrhythmia endpoints in randomized controlled trials of transendocardial stem cell injections for chronic ischemic heart disease. Journal of Cardiovascular Electrophysiology, 2019, 30, 2492-2500.	1.7	3
169	Is the regulation of SIRT1 by miRNA-34a the key to mesenchymal stem cell survival?. Annals of Translational Medicine, 2016, 4, 243-243.	1.7	3
170	Can Endothelial Progenitor Cells Treat Patients With Refractory Angina?. Circulation Research, 2014, 115, 904-907.	4.5	2
171	Clinical evaluation of allogeneic mesenchymal stem cells for Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e046634.	0.8	2
172	S-nitrosylation and MSC-mediated body composition. Oncotarget, 2015, 6, 28517-28518.	1.8	1
173	Regenerative Medicine and the Biology of Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1339-1340.	3.6	1
174	The Interdisciplinary Stem Cell Institute's Use of Food and Drug Administration-Expanded Access Guidelines to Provide Experimental Cell Therapy to Patients With Rare Serious Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 675738.	3.7	1
175	The National Heart, Lung, and Blood Instituteâ€funded Production Assistance for Cellular Therapies (PACT) program: Eighteen years of cell therapy. Clinical and Translational Science, 2021, 14, 2099-2110.	3.1	1
176	Can't Patch Everything: Personalized Medicine for Cell Therapy in Dilated Cardiomyopathy. Journal of the American Heart Association, 2021, 10, e021867.	3.7	1
177	Bilateral pneumonectomy and lung transplant for COVID–19-induced respiratory failure. JTCVS Techniques, 2022, , .	0.4	1
178	Free-breathing gradient recalled echo-based CMR in a swine heart failure model. Scientific Reports, 2022, 12, 3698.	3.3	1
179	Assessment of the LOVO device for final harvest of novel cell therapies: a Production Assistance for Cellular Therapies multi-center study. Cytotherapy, 2022, 24, 691-698.	0.7	1
180	Adult c-Kit(+) progenitor cells are necessary for maintenance and regeneration of olfactory neurons. Journal of Comparative Neurology, 2015, 523, Spc1-Spc1.	1.6	0

#	Article	IF	CITATIONS
181	Regenerative Medicine in the State of Florida: Letter Outlining the Florida Organization for Regenerative Medicine. Stem Cells Translational Medicine, 2018, 7, 511-512.	3.3	0
182	S-nitrosoglutathione reductase (GSNOR) deficiency accelerates cardiomyocyte differentiation of induced pluripotent stem cells. , 2021, 1, .		0
183	Editors' Preamble to The Journal of Cardiovascular Aging. , 2021, 1, .		Ο
184	Abstract 1753: Transcriptomic based Biomarkers Contain Diagnostic and Prognostic Information about Patients with new onset Heart Failure. Circulation, 2007, 116, .	1.6	0
185	Abstract TP91: Multiple Intra-arterial Dosing of the Mesenchymal Stem Cells Reduces Ischemic Brain Injury in a Rat Stroke Model. Stroke, 2018, 49, .	2.0	0
186	Stem cells' potential to restore function in aging systems; are we there yet?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, , .	3.6	0
187	Abstract 168: Intra-arterial Stem Cell Treatment Reduces Ischemic Brain Injury In Reproductively Senescent Female Rats. Stroke, 2015, 46, .	2.0	0