
Andrew J Darwin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6104699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The phage-shock-protein response. Molecular Microbiology, 2005, 57, 621-628.	2.5	259
2	ldentification of Yersinia enterocolitica genes affecting survival in an animal host using signature-tagged transposon mutagenesis. Molecular Microbiology, 1999, 32, 51-62.	2.5	212
3	Periplasmic Nitrate Reductase (NapABC Enzyme) Supports Anaerobic Respiration by <i>Escherichia coli</i> K-12. Journal of Bacteriology, 2002, 184, 1314-1323.	2.2	139
4	Differential regulation by the homologous response regulators NarL and NarP of Escherichia coli Kâ€12 depends on DNA binding site arrangement. Molecular Microbiology, 1997, 25, 583-595.	2.5	102
5	The Phage Shock Protein Response. Annual Review of Microbiology, 2016, 70, 83-101.	7.3	97
6	The psp locus of Yersinia enterocolitica is required for virulence and for growth in vitro when the Ysc type III secretion system is produced. Molecular Microbiology, 2001, 39, 429-445.	2.5	91
7	Nitrate and Nitrite Regulation of the Fnr-dependentaeg-46.5Promoter ofEscherichia coliK-12 is Mediated by Competition Between Homologous Response Regulators (NarL and NarP) for a Common DNA-binding Site. Journal of Molecular Biology, 1995, 251, 15-29.	4.2	74
8	Identification of Inducers of the Yersinia enterocolitica Phage Shock Protein System and Comparison to the Regulation of the RpoE and Cpx Extracytoplasmic Stress Responses. Journal of Bacteriology, 2004, 186, 4199-4208.	2.2	72
9	Fnr, NarP, and NarL Regulation of Escherichia coli K-12 napF (Periplasmic Nitrate Reductase) Operon Transcription In Vitro. Journal of Bacteriology, 1998, 180, 4192-4198.	2.2	65
10	Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas aeruginosa. MBio, 2015, 6, e00823.	4.1	56
11	Stress Relief during Host Infection: The Phage Shock Protein Response Supports Bacterial Virulence in Various Ways. PLoS Pathogens, 2013, 9, e1003388.	4.7	51
12	Analysis of nitrate regulatory protein NarLâ€binding sites in the fdnG and narG operon control regions of Escherichia coli Kâ€12. Molecular Microbiology, 1996, 20, 621-632.	2.5	49
13	PspB and PspC ofYersinia enterocoliticaare dual function proteins: regulators and effectors of the phage-shock-protein response. Molecular Microbiology, 2006, 59, 1610-1623.	2.5	45
14	PspG, a New Member of the Yersinia enterocolitica Phage Shock Protein Regulon. Journal of Bacteriology, 2004, 186, 4910-4920.	2.2	42
15	The Pseudomonas aeruginosa Periplasmic Protease CtpA Can Affect Systems That Impact Its Ability To Mount Both Acute and Chronic Infections. Infection and Immunity, 2013, 81, 4561-4570.	2.2	40
16	A Proteolytic Complex Targets Multiple Cell Wall Hydrolases in Pseudomonas aeruginosa. MBio, 2018, 9, .	4.1	40
17	The NAR Modulon Systems: Nitrate and Nitrite Regulation of Anaerobic Gene Expression. , 1996, , 343-359.		40
18	Global analysis of tolerance to secretinâ€induced stress in <i>Yersinia enterocolitica</i> suggests that the phageâ€shockâ€protein system may be a remarkably selfâ€contained stress response. Molecular Microbiology, 2007, 65, 714-727.	2.5	39

#	Article	IF	CITATIONS
19	Changes in <scp>Psp</scp> protein binding partners, localization and behaviour upon activation of the <i><scp>Y</scp>ersinia enterocolitica</i> phage shock protein response. Molecular Microbiology, 2013, 87, 656-671.	2.5	37
20	Membrane association of PspA depends on activation of the phageâ€shockâ€protein response in <i>Yersinia enterocolitica</i> . Molecular Microbiology, 2010, 78, 429-443.	2.5	35
21	Analysis of Secretin-Induced Stress in <i>Pseudomonas aeruginosa</i> Suggests Prevention Rather than Response and Identifies a Novel Protein Involved in Secretin Function. Journal of Bacteriology, 2009, 191, 898-908.	2.2	34
22	Phage shock proteins B and C prevent lethal cytoplasmic membrane permeability in <i>Yersinia enterocolitica</i> . Molecular Microbiology, 2012, 85, 445-460.	2.5	33
23	Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence, 2014, 5, 835-851.	4.4	33
24	Analysis of the <i>Yersinia enterocolitica</i> PspBC proteins defines functional domains, essential amino acids and new roles within the phageâ€shockâ€protein response. Molecular Microbiology, 2009, 74, 619-633.	2.5	31
25	Multiple promoters control expression of the Yersinia enterocolitica phage-shock-protein A (pspA) operon. Microbiology (United Kingdom), 2006, 152, 1001-1010.	1.8	27
26	Recent findings about the Yersinia enterocolitica phage shock protein response. Journal of Microbiology, 2012, 50, 1-7.	2.8	27
27	YtxR, a Conserved LysR-Like Regulator That Induces Expression of Genes Encoding a Putative ADP-Ribosyltransferase Toxin Homologue in Yersinia enterocolitica. Journal of Bacteriology, 2006, 188, 8033-8043.	2.2	24
28	Yersinia enterocolitica ClpB Affects Levels of Invasin and Motility. Journal of Bacteriology, 2000, 182, 5563-5571.	2.2	19
29	Activity of a Bacterial Cell Envelope Stress Response Is Controlled by the Interaction of a Protein Binding Domain with Different Partners. Journal of Biological Chemistry, 2015, 290, 11417-11430.	3.4	18
30	Improved System for Construction and Analysis of Single-Copy β-Galactosidase Operon Fusions in Yersinia enterocolitica. Applied and Environmental Microbiology, 2005, 71, 5614-5618.	3.1	17
31	Genome-wide screens to identify genes of human pathogenic Yersinia species that are expressed during host infection. Current Issues in Molecular Biology, 2005, 7, 135-49.	2.4	17
32	Phage Shock Protein C (PspC) of Yersinia enterocolitica Is a Polytopic Membrane Protein with Implications for Regulation of the Psp Stress Response. Journal of Bacteriology, 2012, 194, 6548-6559.	2.2	15
33	The Yersinia enterocolitica Phage Shock Proteins B and C Can Form Homodimers and Heterodimers <i>In Vivo</i> with the Possibility of Close Association between Multiple Domains. Journal of Bacteriology, 2011, 193, 5747-5758.	2.2	13
34	Interactions between the Cytoplasmic Domains of PspB and PspC Silence the Yersinia enterocolitica Phage Shock Protein Response. Journal of Bacteriology, 2016, 198, 3367-3378.	2.2	12
35	YtxR Acts as an Overriding Transcriptional Off Switch for the <i>Yersinia enterocolitica</i> Ysc-Yop Type 3 Secretion System. Journal of Bacteriology, 2009, 191, 514-524.	2.2	11
36	FtsH-Dependent Degradation of Phage Shock Protein C in Yersinia enterocolitica and Escherichia coli. Journal of Bacteriology, 2011, 193, 6436-6442.	2.2	11

Andrew J Darwin

#	Article	IF	CITATIONS
37	Psp Stress Response Proteins Form a Complex with Mislocalized Secretins in the <i>Yersinia enterocolitica</i> Cytoplasmic Membrane. MBio, 2017, 8, .	4.1	11
38	Regulation of the Phage-Shock-Protein Stress Response in Yersinia enterocolitica. Advances in Experimental Medicine and Biology, 2007, 603, 167-177.	1.6	10
39	Links between type III secretion and extracytoplasmic stress responses in Yersinia. Frontiers in Cellular and Infection Microbiology, 2012, 2, 125.	3.9	9
40	The C Terminus of Substrates Is Critical but Not Sufficient for Their Degradation by the Pseudomonas aeruginosa CtpA Protease. Journal of Bacteriology, 2020, 202, .	2.2	8
41	Direct and Indirect Interactions Promote Complexes of the Lipoprotein LbcA, the CtpA Protease and Its Substrates, and Other Cell Wall Proteins in Pseudomonas aeruginosa. Journal of Bacteriology, 2021, 203, e0039321.	2.2	8
42	Regulation of Bacterial Type IV Secretion. , 0, , 335-362.		8
43	Pseudomonas aeruginosa C-Terminal Processing Protease CtpA Assembles into a Hexameric Structure That Requires Activation by a Spiral-Shaped Lipoprotein-Binding Partner. MBio, 2022, 13, e0368021.	4.1	7
44	Identification of YsaP, the Pilotin of the Yersinia enterocolitica Ysa Type III Secretion System. Journal of Bacteriology, 2015, 197, 2770-2779.	2.2	5
45	Bacterial Carboxyl-Terminal Processing Proteases Play Critical Roles in the Cell Envelope and Beyond. Journal of Bacteriology, 2022, 204, e0062821.	2.2	5
46	Quorum Sensing in Burkholderia. , 0, , 40-57.		3
47	Elongation factor-P at the crossroads of the host-endosymbiont interface. Microbial Cell, 2015, 2, 360-362.	3.2	2
48	Regulation of Extracellular Toxin Production in <i>Clostridium perfringens</i> ., 0, , 281-294.		1
49	Regulation of Exopolysaccharide Biosynthesis in Pseudomonas aeruginosa. , 0, , 171-189.		1
50	Regulation of Virulence by Iron in Gram-Positive Bacteria. , 0, , 79-105.		0
51	Anthrax and Iron. , 0, , 307-313.		Ο
52	Toxin and Virulence Regulation in Vibrio cholerae. , 0, , 239-261.		0
53	PrfA and the Listeria monocytogenes Switch from Environmental Bacterium to Intracellular Pathogen. , 0, , 363-385.		0
54	Uropathogenic Escherichia coli Virulence and Gene Regulation. , 0, , 133-155.		0

Uropathogenic Escherichia coli Virulence and Gene Regulation. , 0, , 133-155. 54

0

#	Article	IF	CITATIONS
55	Regulation of Pneumococcal Surface Proteins and Capsule. , 0, , 190-208.		Ο

Regulation of Vesicle Formation. , 0, , 441-464.