Max Koppers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6104688/publications.pdf

Version: 2024-02-01

25 papers

3,370 citations

20 h-index 610901 24 g-index

29 all docs

29 docs citations

29 times ranked 5862 citing authors

#	Article	IF	CITATIONS
1	Receptor-Ribosome Coupling: A Link Between Extrinsic Signals and mRNA Translation in Neuronal Compartments. Annual Review of Neuroscience, 2022, 45, .	10.7	5
2	ERÂâ€"Âlysosome contacts at a pre-axonal region regulate axonal lysosome availability. Nature Communications, 2021, 12, 4493.	12.8	32
3	Organelle distribution in neurons: Logistics behind polarized transport. Current Opinion in Cell Biology, 2021, 71, 46-54.	5.4	22
4	Complex Interactions Between Membrane-Bound Organelles, Biomolecular Condensates and the Cytoskeleton. Frontiers in Cell and Developmental Biology, 2020, 8, 618733.	3.7	32
5	On-Site Ribosome Remodeling by Locally Synthesized Ribosomal Proteins in Axons. Cell Reports, 2019, 29, 3605-3619.e10.	6.4	103
6	Late Endosomes Act as mRNA Translation Platforms and Sustain Mitochondria in Axons. Cell, 2019, 176, 56-72.e15.	28.9	300
7	Receptor-specific interactome as a hub for rapid cue-induced selective translation in axons. ELife, 2019, 8, .	6.0	48
8	Molecular control of local translation in axon development and maintenance. Current Opinion in Neurobiology, 2018, 51, 86-94.	4.2	125
9	Full ablation of C9orf72 in mice causes immune system-related pathology and neoplastic events but no motor neuron defects. Acta Neuropathologica, 2016, 132, 145-147.	7.7	104
10	Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways. Acta Neuropathologica, 2016, 132, 175-196.	7.7	113
11	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	21.4	494
12	<scp>C</scp> 9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Annals of Neurology, 2015, 78, 426-438.	5.3	225
13	<scp><i>C9orf72</i></scp> and <scp><i>UNC13A</i></scp> are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: A genomeâ€wide metaâ€analysis. Annals of Neurology, 2014, 76, 120-133.	5.3	91
14	Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathologica, 2013, 125, 777-794.	7.7	461
15	Screening for rare variants in the coding region of ALS-associated genes at 9p21.2 and 19p13.3. Neurobiology of Aging, 2013, 34, 1518.e5-1518.e7.	3.1	16
16	ALS-associated mutations in FUS disrupt the axonal distribution and function of SMN. Human Molecular Genetics, 2013, 22, 3690-3704.	2.9	130
17	Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature, 2012, 488, 499-503.	27.8	522
18	VCP mutations in familial and sporadic amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 837.e7-837.e13.	3.1	103

#	Article	IF	CITATION
19	UNC13A is a modifier of survival in amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 630.e3-630.e8.	3.1	107
20	CGG-repeat expansion in FMR1 is not associated with amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 1852.e1-1852.e3.	3.1	8
21	VAPB and C9orf72 mutations in 1 familial amyotrophic lateral sclerosis patient. Neurobiology of Aging, 2012, 33, 2950.e1-2950.e4.	3.1	47
22	NIPA1 polyalanine repeat expansions are associated with amyotrophic lateral sclerosis. Human Molecular Genetics, 2012, 21, 2497-2502.	2.9	49
23	Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis. Annals of Neurology, 2011, 70, 964-973.	5. 3	168
24	A large genome scan for rare CNVs in amyotrophic lateral sclerosis. Human Molecular Genetics, 2010, 19, 4091-4099.	2.9	51
25	Genetics of Amyotrophic Lateral Sclerosis. , 0, , .		O