
Koji Kakehi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6102922/publications.pdf Version: 2024-02-01

KOUKAKEHI

#	Article	IF	CITATIONS
1	Effects of yttrium and silicon contents in Hastelloy-X built by selective laser melting process. Journal of Alloys and Compounds, 2022, 896, 163050.	5.5	12
2	Influences of Post-Heat Treatment on the Microstructure Evolution and Creep Properties of Ni-Based Superalloy IN718 Fabricated by Electron Beam Melting. Metals, 2022, 12, 446.	2.3	2
3	Effect of process parameters on microstructure and high-temperature strengths of titanium aluminide alloy fabricated by electron beam melting. Keikinzoku/Journal of Japan Institute of Light Metals, 2022, 72, 308-313.	0.4	Ο
4	Yttrium's Effect on the Hot Cracking and Creep Properties of a Ni-Based Superalloy Built Up by Additive Manufacturing. Materials, 2021, 14, 1143.	2.9	15
5	The Effect of the Oriented Structure on Mechanical Properties of Titanium Aluminide Fabricated by Electron Beam Melting. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2021, 85, 190-197.	0.4	1
6	The Effects of Nb Addition on the Oxidation Behavior of Ni–Fe–Cr Alloys at 800°C. Oxidation of Metals, 2021, 95, 189-202.	2.1	11
7	Hierarchical microstructure strengthening in a single crystal high entropy superalloy. Scientific Reports, 2020, 10, 12163.	3.3	21
8	The Effect of Recrystallization on Creep Properties of Alloy IN939 Fabricated by Selective Laser Melting Process. Metals, 2020, 10, 1016.	2.3	20
9	Effect of yttrium addition on creep properties of a Ni-base superalloy built up by selective laser melting. Scripta Materialia, 2020, 183, 71-74.	5.2	32
10	Microstructure and Creep Properties of Ni-Base Superalloy IN718 Built up by Selective Laser Melting in a Vacuum Environment. Metals, 2020, 10, 362.	2.3	19
11	Microstructure of Nickel-Based Superalloy Fabricated by Selective Laser Melting in Vacuum. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 121-124.	0.2	3
12	Study of Formed Oxides in IN718 Alloy during the Fabrication by Selective Laser Melting and Electron Beam Melting. Metals, 2019, 9, 19.	2.3	25
13	Strengths and Microstructure of SUS316L Fabricated by Selective Laser Melting. Materials Transactions, 2018, 59, 482-487.	1.2	7
14	Characterization of Ni-Based Superalloy Built by Selective Laser Melting and Electron Beam Melting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 3831-3837.	2.2	32
15	The Effect of Post-Processes on the Microstructure and Creep Properties of Alloy718 Built Up by Selective Laser Melting. Materials, 2018, 11, 996.	2.9	69
16	The effect of interdendritic l´ phase on the mechanical properties of Alloy 718 built up by additive manufacturing. Materials and Design, 2017, 116, 411-418.	7.0	136
17	The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy. Scientific Reports, 2017, 7, 12658.	3.3	136
18	Effects of build direction and heat treatment on creep properties of Ni-base superalloy built up by additive manufacturing. Scripta Materialia, 2017, 129, 74-78.	5.2	161

Којі Какені

#	Article	IF	CITATIONS
19	Effect of the Prior Particle Boundary on the Microstructure and Mechanical Properties of Hot-Isostatic-Pressed IN718 Alloy. Materials Transactions, 2017, 58, 1042-1048.	1.2	13
20	Influence of Powder Surface Contamination in the Ni-Based Superalloy Alloy718 Fabricated by Selective Laser Melting and Hot Isostatic Pressing. Metals, 2017, 7, 367.	2.3	29
21	Initial process of continuous dynamic recrystallization in a superplastic Al–Mg–Mn alloy. Keikinzoku/Journal of Japan Institute of Light Metals, 2017, 67, 95-100.	0.4	6
22	Microstructure and Strength of HIP Sintered Ni Base Superalloy Using PREP Powder. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80, 508-514.	0.4	2
23	Strengths and Microstructure of SUS316L Fabricated by Selective Laser Melting. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80, 772-777.	0.4	4
24	Effect of secondary orientation on the creep strength of single crystal of a nickel-based superalloy. Transactions of the JSME (in Japanese), 2016, 82, 15-00673-15-00673.	0.2	0
25	20409 Anisotropic creep properties of aluminized Ni-base single crystal superalloy. The Proceedings of Conference of Kanto Branch, 2013, 2013.19, 307-308.	0.0	Ο
26	Effect of plastic anisotropy on the creep strength of single crystals of a nickel-based superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 421-430.	2.2	20
27	Influence of Crystallographic Orientation on the Strength of Ni-Base Superalloy Single Crystals at Temperatures above the Peak Temperature. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 641-648.	0.4	Ο
28	Influence of Precipitate Size and Crystallographic Orientation on Strength of a Single Crystal Ni-Base Superalloy. Materials Transactions, JIM, 1999, 40, 159-167.	0.9	14
29	Influence of Plastic Anisotropy on High Temperature Strength of Single Crystals of a Nickel-Base Superalloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 326-332.	0.4	1
30	Influence of Crystallographic Orientation and Stress Waveforms on Fatigue Strength of Single Crystals of a Ni-Base Superalloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1998, 62, 653-661.	0.4	8
31	Influence of Secondary Precipitates on Strength of Single Crystals of Ni-Based Superalloys. , 0, , 96-101.		0