
Regina G Belz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6101892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Weed Suppression by Release of Isothiocyanates from Turnipâ€Rape Mulch. Agronomy Journal, 2001, 93, 37-43.	1.8	179
2	Herbicides and plant hormesis. Pest Management Science, 2014, 70, 698-707.	3.4	149
3	Residue allelopathy in Parthenium hysterophorus L.—Does parthenin play a leading role?. Crop Protection, 2007, 26, 237-245.	2.1	98
4	Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models. Science of the Total Environment, 2019, 649, 61-74.	8.0	97
5	Hormesis in mixtures — Can it be predicted?. Science of the Total Environment, 2008, 404, 77-87.	8.0	87
6	Plants Release Precursors of Histone Deacetylase Inhibitors to Suppress Growth of Competitors. Plant Cell, 2015, 27, 3175-3189.	6.6	86
7	Does the root to shoot ratio show a hormetic response to stress? An ecological and environmental perspective. Journal of Forestry Research, 2019, 30, 1569-1580.	3.6	82
8	Parthenin hormesis in plants depends on growth conditions. Environmental and Experimental Botany, 2010, 69, 293-301.	4.2	73
9	A Novel Laboratory Screening Bioassay for Crop Seedling Allelopathy. Journal of Chemical Ecology, 2004, 30, 175-198.	1.8	72
10	Dose-Response—A Challenge for Allelopathy?. Nonlinearity in Biology, Toxicology, Medicine, 2005, 3, nonlin.003.02.0.	0.4	60
11	Modeling Effective Dosages in Hormetic Dose-Response Studies. PLoS ONE, 2012, 7, e33432.	2.5	58
12	Enhancing and Extending Biological Performance and Resilience. Dose-Response, 2018, 16, 155932581878450.	1.6	57
13	Stimulation Versus Inhibition—Bioactivity of Parthenin, a Phytochemical from <i>Parthenium Hysterophorus</i> L Dose-Response, 2008, 6, 80-96.	1.6	52
14	A quantitative assessment of hormetic responses of plants to ozone. Environmental Research, 2019, 176, 108527.	7.5	35
15	Predicting biphasic responses in binary mixtures: Pelargonic acid versus glyphosate. Chemosphere, 2017, 178, 88-98.	8.2	33
16	Soil Degradation of Parthenin—Does it Contradict the Role of Allelopathy in the Invasive Weed Parthenium hysterophorus L.?. Journal of Chemical Ecology, 2009, 35, 1137-1150.	1.8	31
17	Low doses of six toxicants change plant size distribution in dense populations of Lactuca sativa. Science of the Total Environment, 2018, 631-632, 510-523.	8.0	28
18	Statistical modeling of the hormetic dose zone and the toxic potency completes the quantitative description of hormetic dose responses. Environmental Toxicology and Chemistry, 2015, 34, 1169-1177.	4.3	27

REGINA G BELZ

#	Article	IF	CITATIONS
19	Modelling biphasic hormetic dose responses to predict sub-NOAEL effects using plant biology as an example. Current Opinion in Toxicology, 2022, 29, 36-42.	5.0	27
20	Low toxin doses change plant size distribution in dense populations – Glyphosate exposed Hordeum vulgare as a greenhouse case study. Environment International, 2019, 132, 105072.	10.0	25
21	Herbicide hormesis can act as a driver of resistance evolution in weeds – PSIIâ€ŧarget site resistance in <i>Chenopodium album</i> L. as a case study. Pest Management Science, 2018, 74, 2874-2883.	3.4	24
22	Low herbicide doses can change the responses of weeds to subsequent treatments in the next generation: metamitron exposed <scp>PSII</scp> â€targetâ€site resistant <scp><i>Chenopodium album</i></scp> as a case study. Pest Management Science, 2020, 76, 3056-3065.	3.4	24
23	Does selective hormesis impact herbicide resistance evolution in weeds? ACCaseâ€resistant populations of <scp><i>Alopecurus myosuroides</i></scp> Huds. as a case study. Pest Management Science, 2018, 74, 1880-1891.	3.4	21
24	Herbicide-Mediated Hormesis. ACS Symposium Series, 2017, , 135-148.	0.5	19
25	Selective toxin effects on faster and slower growing individuals in the formation of hormesis at the population level — A case study with Lactuca sativa and PCIB. Science of the Total Environment, 2016, 566-567, 1205-1214.	8.0	18
26	Low glyphosate doses change reproduction and produce tolerant offspring in dense populations of <scp><i>Hordeum vulgare</i></scp> . Pest Management Science, 2021, 77, 4770-4784.	3.4	18
27	The potential influence of hormesis on evolution of resistance to herbicides. Current Opinion in Environmental Science and Health, 2022, , 100360.	4.1	18
28	Interspecies Variability of Plant Hormesis by the Antiauxin PCIB in a Laboratory Bioassay. Journal of Plant Growth Regulation, 2014, 33, 499-512.	5.1	15
29	Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin. Journal of Chemical Ecology, 2016, 42, 71-83.	1.8	11
30	Realistic low-doses of two emerging contaminants change size distribution of an annual flowering plant population. Ecotoxicology, 2019, 28, 732-743.	2.4	6
31	Stepping beyond hormesis modeling and sub-NOAEL predictions in plant biology. Current Opinion in Environmental Science and Health, 2022, 28, 100366.	4.1	4
32	Detection of Multiâ€Protein Complexes Containing PCNA Using Fluorescence Anisotropy and Hormetic Modeling. FASEB Journal, 2022, 36, .	0.5	1