Michael J Katz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6101524/publications.pdf

Version: 2024-02-01

126907 123424 6,936 60 33 61 citations h-index g-index papers 65 65 65 9216 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Analysis of the Water Adsorption Isotherms in UiO-Based Metal–Organic Frameworks. Journal of Physical Chemistry C, 2022, 126, 1107-1114.	3.1	21
2	Ultrahigh Size Exclusion Selectivity for Carbon Dioxide from Nitrogen/Methane in an Ultramicroporous Metal–Organic Framework. Inorganic Chemistry, 2022, 61, 7970-7979.	4.0	8
3	A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coordination Chemistry Reviews, 2021, 429, 213615.	18.8	140
4	Significant Variability in the Photocatalytic Activity of Natural Titanium-Containing Minerals: Implications for Understanding and Predicting Atmospheric Mineral Dust Photochemistry. Environmental Science & Environmental S	10.0	17
5	Alkaline Earth Metal–Organic Frameworks with Tailorable Ion Release: A Path for Supporting Biomineralization. ACS Applied Materials & Interfaces, 2019, 11, 32739-32745.	8.0	30
6	Selective decontamination of the reactive air pollutant nitrous acid <i>via</i> node-linker cooperativity in a metal–organic framework. Chemical Science, 2019, 10, 5576-5581.	7.4	28
7	Investigating the cheletropic reaction between sulfur dioxide and butadiene-containing linkers in UiO-66. Canadian Journal of Chemistry, 2018, 96, 139-143.	1.1	5
8	Catalytic conversion of glucose to 5-hydroxymethylfurfural using zirconium-containing metal–organic frameworks using microwave heating. RSC Advances, 2018, 8, 31618-31627.	3.6	49
9	Investigating the crystal engineering of the pillared paddlewheel metal–organic framework Zn2(NH2BDC)2DABCO. CrystEngComm, 2018, 20, 6082-6087.	2.6	3
10	Bistable Dithienylethene-Based Metal–Organic Framework Illustrating Optically Induced Changes in Chemical Separations. Journal of the American Chemical Society, 2017, 139, 13280-13283.	13.7	98
11	Dihydrolevoglucosenone (Cyrene) As a Green Alternative to <i>N,N</i> -Dimethylformamide (DMF) in MOF Synthesis. ACS Sustainable Chemistry and Engineering, 2016, 4, 7186-7192.	6.7	123
12	Barrier-Layer-Mediated Electron Transfer from Semiconductor Electrodes to Molecules in Solution: Sensitivity of Mechanism to Barrier-Layer Thickness. Journal of Physical Chemistry C, 2016, 120, 20922-20928.	3.1	9
13	The dual capture of As ^V and As ^{III} by UiO-66 and analogues. Chemical Science, 2016, 7, 6492-6498.	7.4	181
14	Determining the structural stability of UiO-67 with respect to time: a solid-state NMR investigation. Chemical Communications, 2016, 52, 4971-4974.	4.1	41
15	One Electron Changes Everything. A Multispecies Copper Redox Shuttle for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 3731-3740.	3.1	45
16	High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27. Dalton Transactions, 2016, 45, 4150-4153.	3.3	102
17	High Efficiency Adsorption and Removal of Selenate and Selenite from Water Using Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 7488-7494.	13.7	330
18	Turning On Catalysis: Incorporation of a Hydrogen-Bond-Donating Squaramide Moiety into a Zr Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 919-925.	13.7	186

#	Article	IF	CITATIONS
19	A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals. New Journal of Chemistry, 2015, 39, 2396-2399.	2.8	133
20	Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH ₂ . Chemical Science, 2015, 6, 2286-2291.	7.4	265
21	Destruction of chemical warfare agents using metal–organic frameworks. Nature Materials, 2015, 14, 512-516.	27.5	790
22	One Step Backward Is Two Steps Forward: Enhancing the Hydrolysis Rate of UiO-66 by Decreasing [OH ^{â€"}]. ACS Catalysis, 2015, 5, 4637-4642.	11.2	84
23	Structural Design Parameters for Highly Birefringent Coordination Polymers. Inorganic Chemistry, 2015, 54, 6462-6471.	4.0	23
24	Dynamics of Back Electron Transfer in Dye-Sensitized Solar Cells Featuring 4- <i>tert</i> -Butyl-Pyridine and Atomic-Layer-Deposited Alumina as Surface Modifiers. Journal of Physical Chemistry B, 2015, 119, 7162-7169.	2.6	15
25	Simple and Compelling Biomimetic Metal–Organic Framework Catalyst for the Degradation of Nerve Agent Simulants. Angewandte Chemie - International Edition, 2014, 53, 497-501.	13.8	364
26	Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?. APL Materials, 2014, 2, .	5.1	264
27	Directed Growth of Electroactive Metalâ€Organic Framework Thin Films Using Electrophoretic Deposition. Advanced Materials, 2014, 26, 6295-6300.	21.0	265
28	Fabrication of Transparent-Conducting-Oxide-Coated Inverse Opals as Mesostructured Architectures for Electrocatalysis Applications: A Case Study with NiO. ACS Applied Materials & Samp; Interfaces, 2014, 6, 12290-12294.	8.0	28
29	Are Zr ₆ -based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chemical Communications, 2014, 50, 8944.	4.1	277
30	High-Surface-Area Architectures for Improved Charge Transfer Kinetics at the Dark Electrode in Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8646-8650.	8.0	17
31	A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications, 2013, 49, 9449.	4.1	1,340
32	Effects of Adsorbed Pyridine Derivatives and Ultrathin Atomic-Layer-Deposited Alumina Coatings on the Conduction Band-Edge Energy of TiO ₂ and on Redox-Shuttle-Derived Dark Currents. Langmuir, 2013, 29, 806-814.	3.5	34
33	Class III Delocalization and Exciton Coupling in a Bimetallic Bisâ€ligand Radical Complex. Chemistry - A European Journal, 2013, 19, 9606-9618.	3.3	32
34	Diamido-Ether Actinide Complexes as Initiators for Lactide Ring-Opening Polymerization. Organometallics, 2013, 32, 1183-1192.	2.3	53
35	Unexpected Transformation of a Schiff Base Pyridine N-Oxide in the Presence of Pr(NO3)3 \hat{A} · 6H2O. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 111-115.	1.6	0
36	Toward solar fuels: Water splitting with sunlight and "rust�. Coordination Chemistry Reviews, 2012, 256, 2521-2529.	18.8	209

#	Article	IF	CITATIONS
37	Vapochromic Behaviour of $M[Au(CN)2]2$ -Based Coordination Polymers (M = Co, Ni). Sensors, 2012, 12, 3669-3692.	3.8	31
38	Photochromic benzo[g]quinoxalines. Canadian Journal of Chemistry, 2011, 89, 297-302.	1.1	4
39	Changes in Electronic Properties of Polymeric One-Dimensional {[M(CN) ₂] ^{â°'}_{<i>n(i></i>} (M = Au, Ag) Chains Due to Neighboring Closed-Shell Zn(II) or Open-Shell Cu(II) Ions. Inorganic Chemistry, 2011, 50, 231-237.}	4.0	24
40	Directed ortho, ortho'-dimetalation of hydrobenzoin: Rapid access to hydrobenzoin derivatives useful for asymmetric synthesis. Beilstein Journal of Organic Chemistry, 2011, 7, 1315-1322.	2.2	7
41	Characterising Loneâ€Pair Activity of Lead(II) by ²⁰⁷ Pb Solidâ€State NMR Spectroscopy: Coordination Polymers of [N(CN) ₂] ^{â^'} and [Au(CN) ₂] ^{â^'} with Terpyridine Ancillary Ligands. Chemistry - A European Journal, 2011, 17, 3609-3618.	3.3	49
42	Synthesis and characterization of a series of halide-bridged, multinuclear iron(ii) and cobalt(ii) diamido complexes and a dinuclear, high-spin cobalt(ii) alkyl derivative. Dalton Transactions, 2010, 39, 9889.	3.3	12
43	Highly Birefringent Cyanoaurate Coordination Polymers: The Effect of Polarizable Câ^'X Bonds (X = Cl,) Tj ETQq1	l 0,78431 13.7	4 rgBT /Ove
44	Impact of Metallophilicity on "Colossal―Positive and Negative Thermal Expansion in a Series of Isostructural Dicyanometallate Coordination Polymers. Journal of the American Chemical Society, 2009, 131, 4866-4871.	13.7	109
45	Natural abundance 13C and 15N solid-state NMR analysis of paramagnetic transition-metal cyanide coordination polymers. Physical Chemistry Chemical Physics, 2009, 11, 6925.	2.8	20
46	The use of aurophilic and other metal–metal interactions as crystal engineering design elements to increase structural dimensionality. Chemical Society Reviews, 2008, 37, 1884.	38.1	332
47	Polymorphism of Zn[Au(CN) ₂] ₂ and Its Luminescent Sensory Response to NH ₃ Vapor. Journal of the American Chemical Society, 2008, 130, 10662-10673.	13.7	182
48	NHC Complexes of Osmium Clusters: A Structural and Reactivity Study. Organometallics, 2008, 27, 5777-5799.	2.3	53
49	Synthesis, Structures, and Kinetics of Mixed-Donor Amidoâ^'Aminoâ^'Siloxo Ligands from Symmetrical Diamidosilyl Ether Ligands via a Retro-Brook Rearrangement. Inorganic Chemistry, 2008, 47, 812-822.	4.0	8
50	Structural and Spectroscopic Impact of Tuning the Stereochemical Activity of the Lone Pair in Lead(II) Cyanoaurate Coordination Polymers via Ancillary Ligands. Inorganic Chemistry, 2008, 47, 6353-6363.	4.0	50
51	Preparation and characterization of two chiral Au(CN)2-based coordination polymers containing (1R,2R)-N,N′-dimethylcyclohexanediamine. CrystEngComm, 2007, 9, 1078.	2.6	14
52	A Concert of Weak Interactions Generates the Very Complex {Cu(tmeda)[Au(CN)4]2}·/3H2O Structure. Crystal Growth and Design, 2007, 7, 1946-1948.	3.0	11
53	Highly Birefringent Materials Designed Using Coordination Polymer Synthetic Methodology. Angewandte Chemie - International Edition, 2007, 46, 8804-8807.	13.8	63
54	Structure and Multinuclear Solid-State NMR of a Highly Birefringent Leadâ^'Gold Cyanide Coordination Polymer. Journal of the American Chemical Society, 2006, 128, 3669-3676.	13.7	73

#	Article	IF	CITATION
55	[Au(CN)4]-as Both an Intramolecular and Intermolecular Bidentate Ligand with [(tmeda)Cu($\hat{l}\frac{1}{4}$ -OH)] Dimers:Â from Antiferro- to Ferromagnetic Coupling in Polymorphs. Inorganic Chemistry, 2006, 45, 1757-1765.	4.0	29
56	Diamidosilylether complexes of yttrium(III) and chromium(III): Synthetic challenges and surprises. Inorganica Chimica Acta, 2006, 359, 2826-2834.	2.4	15
57	The perils and opportunities of reactive building blocks: Attempted synthesis of new Hg(CN)2-based coordination polymers and the structures of the resulting products. Journal of Molecular Structure, 2006, 796, 223-229.	3.6	14
58	A New Basic Motif in Cyanometallate Coordination Polymers: Structure and Magnetic Behavior of $M(\hat{l}\frac{1}{4}\text{-OH2})2[Au(CN)2]2$ (M=Cu, Ni). Chemistry - A European Journal, 2006, 12, 6748-6761.	3.3	33
59	Structural Pitstops and Turnoffs on the Way to the Birefringent 2-D Layer Structure $$\{hbox{(tmeda)M[Hg(CN)}_{2}]_{2}\}[hbox{HgCl}_{4}]$ \$ (M=Cu, Ni). Journal of Inorganic and Organometallic Polymers and Materials, 2005, 15, 447-458.	3.7	6
60	Synthesis and structure of diamido ether uranium(iv) and thorium(iv) halide "ate―complexes and their conversion to salt-free bis(alkyl) complexes. Dalton Transactions, 2005, , 3083.	3.3	51