Michael J Katz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6101524/publications.pdf Version: 2024-02-01

ΜΙCHAELLKATZ

#	Article	IF	CITATIONS
1	A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications, 2013, 49, 9449.	4.1	1,340
2	Destruction of chemical warfare agents using metal–organic frameworks. Nature Materials, 2015, 14, 512-516.	27.5	790
3	Simple and Compelling Biomimetic Metal–Organic Framework Catalyst for the Degradation of Nerve Agent Simulants. Angewandte Chemie - International Edition, 2014, 53, 497-501.	13.8	364
4	The use of aurophilic and other metal–metal interactions as crystal engineering design elements to increase structural dimensionality. Chemical Society Reviews, 2008, 37, 1884.	38.1	332
5	High Efficiency Adsorption and Removal of Selenate and Selenite from Water Using Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 7488-7494.	13.7	330
6	Are Zr ₆ -based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chemical Communications, 2014, 50, 8944.	4.1	277
7	Directed Growth of Electroactive Metalâ€Organic Framework Thin Films Using Electrophoretic Deposition. Advanced Materials, 2014, 26, 6295-6300.	21.0	265
8	Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH ₂ . Chemical Science, 2015, 6, 2286-2291.	7.4	265
9	Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?. APL Materials, 2014, 2, .	5.1	264
10	Toward solar fuels: Water splitting with sunlight and "rust�. Coordination Chemistry Reviews, 2012, 256, 2521-2529.	18.8	209
11	Turning On Catalysis: Incorporation of a Hydrogen-Bond-Donating Squaramide Moiety into a Zr Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 919-925.	13.7	186
12	Polymorphism of Zn[Au(CN) ₂] ₂ and Its Luminescent Sensory Response to NH ₃ Vapor. Journal of the American Chemical Society, 2008, 130, 10662-10673.	13.7	182
13	The dual capture of As ^V and As ^{III} by UiO-66 and analogues. Chemical Science, 2016, 7, 6492-6498.	7.4	181
14	A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coordination Chemistry Reviews, 2021, 429, 213615.	18.8	140
15	A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals. New Journal of Chemistry, 2015, 39, 2396-2399.	2.8	133
16	Dihydrolevoglucosenone (Cyrene) As a Green Alternative to <i>N,N</i> -Dimethylformamide (DMF) in MOF Synthesis. ACS Sustainable Chemistry and Engineering, 2016, 4, 7186-7192.	6.7	123
17	Impact of Metallophilicity on "Colossal―Positive and Negative Thermal Expansion in a Series of Isostructural Dicyanometallate Coordination Polymers. Journal of the American Chemical Society, 2009, 131, 4866-4871.	13.7	109
18	High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27. Dalton Transactions, 2016, 45, 4150-4153.	3.3	102

MICHAEL J KATZ

#	Article	IF	CITATIONS
19	Bistable Dithienylethene-Based Metal–Organic Framework Illustrating Optically Induced Changes in Chemical Separations. Journal of the American Chemical Society, 2017, 139, 13280-13283.	13.7	98
20	One Step Backward Is Two Steps Forward: Enhancing the Hydrolysis Rate of UiO-66 by Decreasing [OH [–]]. ACS Catalysis, 2015, 5, 4637-4642.	11.2	84
21	Structure and Multinuclear Solid-State NMR of a Highly Birefringent Leadâ^'Gold Cyanide Coordination Polymer. Journal of the American Chemical Society, 2006, 128, 3669-3676.	13.7	73
22	Highly Birefringent Materials Designed Using Coordination Polymer Synthetic Methodology. Angewandte Chemie - International Edition, 2007, 46, 8804-8807.	13.8	63
23	NHC Complexes of Osmium Clusters: A Structural and Reactivity Study. Organometallics, 2008, 27, 5777-5799.	2.3	53
24	Diamido-Ether Actinide Complexes as Initiators for Lactide Ring-Opening Polymerization. Organometallics, 2013, 32, 1183-1192.	2.3	53
25	Synthesis and structure of diamido ether uranium(iv) and thorium(iv) halide "ate―complexes and their conversion to salt-free bis(alkyl) complexes. Dalton Transactions, 2005, , 3083.	3.3	51
26	Structural and Spectroscopic Impact of Tuning the Stereochemical Activity of the Lone Pair in Lead(II) Cyanoaurate Coordination Polymers via Ancillary Ligands. Inorganic Chemistry, 2008, 47, 6353-6363.	4.0	50
27	Characterising Loneâ€Pair Activity of Lead(II) by ²⁰⁷ Pb Solidâ€State NMR Spectroscopy: Coordination Polymers of [N(CN) ₂] ^{â^'} and [Au(CN) ₂] ^{â^'} with Terpyridine Ancillary Ligands. Chemistry - A European Journal, 2011, 17, 3609-3618.	3.3	49
28	Catalytic conversion of glucose to 5-hydroxymethylfurfural using zirconium-containing metal–organic frameworks using microwave heating. RSC Advances, 2018, 8, 31618-31627.	3.6	49
29	One Electron Changes Everything. A Multispecies Copper Redox Shuttle for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 3731-3740.	3.1	45
30	Highly Birefringent Cyanoaurate Coordination Polymers: The Effect of Polarizable Câ^'X Bonds (X = Cl,) Tj ETQq0	0 0 rgBT /	Overlock 10 44
31	Determining the structural stability of UiO-67 with respect to time: a solid-state NMR investigation. Chemical Communications, 2016, 52, 4971-4974.	4.1	41
32	Effects of Adsorbed Pyridine Derivatives and Ultrathin Atomic-Layer-Deposited Alumina Coatings on the Conduction Band-Edge Energy of TiO ₂ and on Redox-Shuttle-Derived Dark Currents. Langmuir, 2013, 29, 806-814.	3.5	34
33	A New Basic Motif in Cyanometallate Coordination Polymers: Structure and Magnetic Behavior of M(μ-OH2)2[Au(CN)2]2 (M=Cu, Ni). Chemistry - A European Journal, 2006, 12, 6748-6761.	3.3	33
34	Classâ€III Delocalization and Exciton Coupling in a Bimetallic Bisâ€ l igand Radical Complex. Chemistry - A European Journal, 2013, 19, 9606-9618.	3.3	32
35	Vapochromic Behaviour of M[Au(CN)2]2-Based Coordination Polymers (M = Co, Ni). Sensors, 2012, 12, 3669-3692.	3.8	31
36	Alkaline Earth Metal–Organic Frameworks with Tailorable Ion Release: A Path for Supporting Biomineralization. ACS Applied Materials & Interfaces, 2019, 11, 32739-32745.	8.0	30

MICHAEL J KATZ

#	Article	IF	CITATIONS
37	[Au(CN)4]-as Both an Intramolecular and Intermolecular Bidentate Ligand with [(tmeda)Cu(μ-OH)] Dimers:Â from Antiferro- to Ferromagnetic Coupling in Polymorphs. Inorganic Chemistry, 2006, 45, 1757-1765.	4.0	29
38	Fabrication of Transparent-Conducting-Oxide-Coated Inverse Opals as Mesostructured Architectures for Electrocatalysis Applications: A Case Study with NiO. ACS Applied Materials & Interfaces, 2014, 6, 12290-12294.	8.0	28
39	Selective decontamination of the reactive air pollutant nitrous acid <i>via</i> node-linker cooperativity in a metal–organic framework. Chemical Science, 2019, 10, 5576-5581.	7.4	28
40	Changes in Electronic Properties of Polymeric One-Dimensional {[M(CN) ₂] ^{â^²} } _{<i>n</i>} (M = Au, Ag) Chains Due to Neighboring Closed-Shell Zn(II) or Open-Shell Cu(II) Ions. Inorganic Chemistry, 2011, 50, 231-237.	4.0	24
41	Structural Design Parameters for Highly Birefringent Coordination Polymers. Inorganic Chemistry, 2015, 54, 6462-6471.	4.0	23
42	Analysis of the Water Adsorption Isotherms in UiO-Based Metal–Organic Frameworks. Journal of Physical Chemistry C, 2022, 126, 1107-1114.	3.1	21
43	Natural abundance 13C and 15N solid-state NMR analysis of paramagnetic transition-metal cyanide coordination polymers. Physical Chemistry Chemical Physics, 2009, 11, 6925.	2.8	20
44	High-Surface-Area Architectures for Improved Charge Transfer Kinetics at the Dark Electrode in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 8646-8650.	8.0	17
45	Significant Variability in the Photocatalytic Activity of Natural Titanium-Containing Minerals: Implications for Understanding and Predicting Atmospheric Mineral Dust Photochemistry. Environmental Science & Technology, 2020, 54, 13509-13516.	10.0	17
46	Diamidosilylether complexes of yttrium(III) and chromium(III): Synthetic challenges and surprises. Inorganica Chimica Acta, 2006, 359, 2826-2834.	2.4	15
47	Dynamics of Back Electron Transfer in Dye-Sensitized Solar Cells Featuring 4- <i>tert</i> -Butyl-Pyridine and Atomic-Layer-Deposited Alumina as Surface Modifiers. Journal of Physical Chemistry B, 2015, 119, 7162-7169.	2.6	15
48	The perils and opportunities of reactive building blocks: Attempted synthesis of new Hg(CN)2-based coordination polymers and the structures of the resulting products. Journal of Molecular Structure, 2006, 796, 223-229.	3.6	14
49	Preparation and characterization of two chiral Au(CN)2-based coordination polymers containing (1R,2R)-N,N′-dimethylcyclohexanediamine. CrystEngComm, 2007, 9, 1078.	2.6	14
50	Synthesis and characterization of a series of halide-bridged, multinuclear iron(ii) and cobalt(ii) diamido complexes and a dinuclear, high-spin cobalt(ii) alkyl derivative. Dalton Transactions, 2010, 39, 9889.	3.3	12
51	A Concert of Weak Interactions Generates the Very Complex {Cu(tmeda)[Au(CN)4]2}·/3H2O Structure. Crystal Growth and Design, 2007, 7, 1946-1948.	3.0	11
52	Barrier-Layer-Mediated Electron Transfer from Semiconductor Electrodes to Molecules in Solution: Sensitivity of Mechanism to Barrier-Layer Thickness. Journal of Physical Chemistry C, 2016, 120, 20922-20928.	3.1	9
53	Synthesis, Structures, and Kinetics of Mixed-Donor Amidoâ^'Aminoâ^'Siloxo Ligands from Symmetrical Diamidosilyl Ether Ligands via a Retro-Brook Rearrangement. Inorganic Chemistry, 2008, 47, 812-822.	4.0	8
54	Ultrahigh Size Exclusion Selectivity for Carbon Dioxide from Nitrogen/Methane in an Ultramicroporous Metal–Organic Framework. Inorganic Chemistry, 2022, 61, 7970-7979.	4.0	8

MICHAEL J KATZ

#	Article	IF	CITATIONS
55	Directed ortho,ortho'-dimetalation of hydrobenzoin: Rapid access to hydrobenzoin derivatives useful for asymmetric synthesis. Beilstein Journal of Organic Chemistry, 2011, 7, 1315-1322.	2.2	7
56	Structural Pitstops and Turnoffs on the Way to the Birefringent 2-D Layer Structure \$\${hbox{(tmeda)M[Hg(CN)}_{2}]_{2}}[hbox{HgCl}_{4}]\$\$ (M=Cu, Ni). Journal of Inorganic and Organometallic Polymers and Materials, 2005, 15, 447-458.	3.7	6
57	Investigating the cheletropic reaction between sulfur dioxide and butadiene-containing linkers in UiO-66. Canadian Journal of Chemistry, 2018, 96, 139-143.	1.1	5
58	Photochromic benzo[g]quinoxalines. Canadian Journal of Chemistry, 2011, 89, 297-302.	1.1	4
59	Investigating the crystal engineering of the pillared paddlewheel metal–organic framework Zn2(NH2BDC)2DABCO. CrystEngComm, 2018, 20, 6082-6087.	2.6	3
60	Unexpected Transformation of a Schiff Base Pyridine N-Oxide in the Presence of Pr(NO3)3 · 6H2O. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 111-115.	1.6	0