Michael Brunger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6101006/publications.pdf

Version: 2024-02-01

345 papers 7,460 citations

71102 41 h-index 60 g-index

347 all docs

347 docs citations

times ranked

347

2041 citing authors

#	Article	IF	CITATIONS
1	Electron–molecule scattering cross-sections. I. Experimental techniques and data for diatomic molecules. Physics Reports, 2002, 357, 215-458.	25.6	299
2	LXCat: an Openâ€Access, Webâ€Based Platform for Data Needed for Modeling Low Temperature Plasmas. Plasma Processes and Polymers, 2017, 14, 1600098.	3.0	188
3	Differential cross sections for electron-impact excitation of the electronic states of N2. Physical Review A, 1990, 41, 1413-1426.	2.5	99
4	Positron and electron scattering from tetrahydrofuran. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 2079-2086.	1.5	98
5	Elastic electron scattering from helium: absolute experimental cross sections, theory and derived interaction potentials. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 1823-1838.	1.5	92
6	Single electron tracks in water vapour for energies below 100eV. International Journal of Mass Spectrometry, 2008, 277, 175-179.	1.5	90
7	Integral cross sections for electron impact excitation of electronic states of N2. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 1185-1199.	1.5	89
8	Modelling low energy electron and positron tracks for biomedical applications. International Journal of Radiation Biology, 2012, 88, 71-76.	1.8	80
9	Electron-scattering cross sections for collisions with tetrahydrofuran from 50 to 5000 eV. Physical Review A, 2009, 80, .	2.5	76
10	Absolute elastic cross-sections for low-energy electron scattering from tetrahydrofuran. New Journal of Physics, 2007, 9, 41-41.	2.9	74
11	Electron scattering and transport in biofuels, biomolecules and biomass fragments. International Reviews in Physical Chemistry, 2017, 36, 333-376.	2.3	72
12	Electron collisions in atmospheres. International Reviews in Physical Chemistry, 2016, 35, 297-351.	2.3	67
13	Modelling of plasma processes in cometary and planetary atmospheres. Plasma Sources Science and Technology, 2013, 22, 013002.	3.1	65
14	Elastic and inelastic cross sections for low-energy electron collisions with pyrimidine. Journal of Chemical Physics, 2012, 136, 144310.	3.0	64
15	Total and positronium formation cross sections for positron scattering from H ₂ O and HCOOH. New Journal of Physics, 2009, 11, 103036.	2.9	63
16	Positron scattering from O ₂ . Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 215206.	1.5	62
17	Positron Scattering from Molecules: An Experimental Cross Section Compilation for Positron Transport Studies and Benchmarking Theory. Journal of Physical and Chemical Reference Data, 2017, 46,	4.2	60
18	Low energy electron scattering from CO: absolute cross section measurements and R-matrix calculations. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 3197-3214.	1.5	58

#	Article	IF	Citations
19	Cross sections and oscillator strengths for electron-impact excitation of the AlfB11 electronic state of water. Journal of Chemical Physics, 2007, 126, 064306.	3.0	57
20	Experimental and theoretical investigation of the triple differential cross section for electron impact ionization of pyrimidine molecules. Journal of Chemical Physics, 2012, 136, 024304.	3.0	57
21	Total electron-scattering cross sections from pyrimidine as measured using a magnetically confined experimental system. Physical Review A, 2013, 88, .	2.5	56
22	Cross section data sets for electron collisions with H2, O2, CO, CO2, N2O and H2O. European Physical Journal D, 2012, 66, 1.	1.3	55
23	Low-energy elastic electron interactions with pyrimidine. Physical Review A, 2011, 84, .	2.5	53
24	Electron-collision cross sections for iodine. Physical Review A, 2011, 83, .	2.5	52
25	Total, elastic, and inelastic cross sections for positron and electron collisions with tetrahydrofuran. Journal of Chemical Physics, 2013, 138, 074301.	3.0	52
26	Absolute cross sections for dissociative electron attachment and dissociative ionization of cobalt tricarbonyl nitrosyl in the energy range from 0 eV to 140 eV. Journal of Chemical Physics, 2013, 138, 044305.	3.0	51
27	Low-energy electron and positron transport in gases and soft-condensed systems of biological relevance. Applied Radiation and Isotopes, 2014, 83, 77-85.	1.5	51
28	Low-energy electron scattering from methane. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 2239-2259.	1.5	50
29	Total cross sections for positron and electron scattering from pyrimidine. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 215204.	1.5	49
30	The role of pyrimidine and water as underlying molecular constituents for describing radiation damage in living tissue: A comparative study. Journal of Applied Physics, 2015, 117, .	2.5	48
31	Near-threshold vibrational excitation of H2by electron impact: Resolution of discrepancies between experiment and theory. Physical Review Letters, 1990, 65, 3253-3256.	7.8	47
32	Cross sections for electron impact excitation of the vibrationally resolved A $\hat{1}$ electronic state of carbon monoxide. Journal of Chemical Physics, 2007, 126, 064307.	3.0	47
33	Scattering data for modelling positron tracks in gaseous and liquid water. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 145001.	1.5	47
34	Elastic scattering of low-energy electrons from ammonia. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 1533-1542.	1.5	46
35	Resonant Mechanisms in the Vibrational Excitation of Ground StateO2. Physical Review Letters, 1996, 76, 3534-3537.	7.8	46
36	Electron collisions with ethylene. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 1615-1626.	1.5	46

#	Article	IF	CITATIONS
37	Inelastic scattering of electrons from sodium. Journal of Physics B: Atomic and Molecular Physics, 1986, 19, 3313-3326.	1.6	45
38	An electron momentum spectroscopy investigation of the 4d core states of xenon. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, L597-L601.	1.5	45
39	Electron collisions with phenol: Total, integral, differential, and momentum transfer cross sections and the role of multichannel coupling effects on the elastic channel. Journal of Chemical Physics, 2015, 142, 104304.	3.0	44
40	Norbornane: An investigation into its valence electronic structure using electron momentum spectroscopy, and density functional and Green's function theories. Journal of Chemical Physics, 2004, 121, 10525-10541.	3.0	43
41	Elastic electron scattering from. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 213-233.	1.5	42
42	Positron scattering from the isoelectronic molecules N ₂ , CO and C ₂ H ₂ . New Journal of Physics, 2011, 13, 115001.	2.9	42
43	Differential cross sections and cross-section ratios for the electron-impact excitation of the neon2p53sconfiguration. Physical Review A, 2002, 65, .	2.5	41
44	Excitation of electronic states in tetrahydrofuran by electron impact. Journal of Chemical Physics, 2011, 134, 144302.	3.0	41
45	Electron drift velocities in He and water mixtures: Measurements and an assessment of the water vapour cross-section sets. Journal of Chemical Physics, 2014, 141, 014308.	3.0	41
46	Electron impact ionisation and fragmentation of methanol and ethanol. International Journal of Mass Spectrometry, 2016, 404, 48-59.	1.5	41
47	Differential cross sections for elastic and inelastic n=2 excitation of ground-state helium at 29.6 and 40.1 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 1990, 23, 1325-1335.	1.5	40
48	Positron scattering from argon: total cross sections and the scattering length. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 015203.	1.5	39
49	Dynamical (e,2e) investigations of tetrahydrofuran and tetrahydrofurfuryl alcohol as DNA analogues. Chemical Physics Letters, 2013, 572, 32-37.	2.6	39
50	Excitation of the electronic states of carbon monoxide by electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 1993, 26, 1743-1759.	1.5	38
51	Electron collisions with NO: elastic scattering and rovibrational (0 to 1, 2, 3, 4) excitation cross sections. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 487-504.	1.5	38
52	Coexistence of 1,3-butadiene conformers in ionization energies and Dyson orbitals. Journal of Chemical Physics, 2005, 123, 124315.	3.0	38
53	Elastic cross sections for electron scattering from GeF4: Predominance of atomic-F in the high-energy collision dynamics. Journal of Chemical Physics, 2012, 136, 134313.	3.0	38
	Total cross sections for positron scattering from <mml:math< td=""><td></td><td></td></mml:math<>		

Total cross sections for positron scattering from<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mtext>H</mml:mtext><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:mrow></mml:mathlow energies. Physical Review A, 2009, 80, .

#	Article	IF	CITATIONS
55	Experimental determination of the scattering length for positron scattering from krypton. European Physical Journal D, 2011, 64, 317-321.	1.3	37
56	Transport coefficients and cross sections for electrons in water vapour: Comparison of cross section sets using an improved Boltzmann equation solution. Journal of Chemical Physics, 2012, 136, 024318.	3.0	37
57	Electron-impact excitation of Rydberg and valence electronic states of nitric oxide: I. Differential cross sections. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 783-808.	1.5	36
58	Positron scattering from water. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 1597-1604.	1.5	36
59	Cross sections for the electron impact excitation of the B1, A1 and A1 dissociative electronic states of water. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 697-708.	1.5	36
60	Elastic Cross Sections for Electron Collisions with Molecules Relevant to Plasma Processing. Journal of Physical and Chemical Reference Data, 2010, 39, 033106.	4.2	36
61	Electron swarm transport in THF and water mixtures. European Physical Journal D, 2014, 68, 1.	1.3	36
62	Electron impact excitation of the 31P state in magnesium. Journal of Physics B: Atomic, Molecular and Optical Physics, 1988, 21, 1639-1648.	1.5	35
63	Procedures for conditioning W- and Ni-moderators for application in positron-scattering measurements. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 533-536.	1.4	35
64	A dynamical (e,2e) investigation of the structurally related cyclic ethers tetrahydrofuran, tetrahydropyran, and 1,4-dioxane. Journal of Chemical Physics, 2013, 139, 034306.	3.0	35
65	A Density Functional Theory and Electron Momentum Spectroscopy Study into the Complete Valence Electronic Structure of Cubane. Journal of the American Chemical Society, 2000, 122, 3892-3900.	13.7	34
66	Low-energy electron scattering from pyrimidine: Similarities and differences with benzene. Chemical Physics Letters, 2012, 535, 30-34.	2.6	34
67	An experimental and theoretical investigation into the excited electronic states of phenol. Journal of Chemical Physics, 2014, 141, 074314.	3.0	34
68	Differential cross sections for the electron impact excitation of pyrimidine. Journal of Chemical Physics, 2012, 137, 074304.	3.0	33
69	Nitric oxide excited under auroral conditions: Excited state densities and band emissions. Journal of Geophysical Research, 2000, 105, 20857-20867.	3.3	32
70	An investigation into electron scattering from pyrazine at intermediate and high energies. Journal of Chemical Physics, 2013, 139, 184310.	3.0	32
71	Positron interactions with water–total elastic, total inelastic, and elastic differential cross section measurements. Journal of Chemical Physics, 2014, 140, 044320.	3.0	32
72	Experimental confirmation for resonance enhancement in the electron impact excitation cross sections of theall "gandbllg+electronic states of O2. Physical Review Letters, 1992, 69, 2495-2498.	7.8	31

#	Article	IF	CITATIONS
73	Theoretical and (e,2e) Experimental Investigation into the Complete Valence Electronic Structure of [1.1.1]Propellane. Journal of the American Chemical Society, 1997, 119, 2896-2904.	13.7	31
74	Production of vibrationally excited N2 by electron impact. Planetary and Space Science, 2004, 52, 815-822.	1.7	31
75	Positron scattering from 3-hydroxy-tetrahydrofuran. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 085201.	1.5	31
76	Cross sections for electron impact excitation of the C Î1 and D Σ1+ electronic states in N2O. Journal of Chemical Physics, 2009, 131, 114307.	3.0	31
77	Substitution effects in elastic electron collisions with CH3X (X=F, Cl, Br, I) molecules. Journal of Chemical Physics, 2010, 132, 074309.	3.0	31
78	Positron scattering from methane. Physical Review A, 2012, 85, .	2.5	31
79	Electron scattering by biomass molecular fragments: useful data for plasma applications?. European Physical Journal D, 2016, 70, 1.	1.3	31
80	Electron transport in biomolecular gaseous and liquid systems: theory, experiment and self-consistent cross-sections. Plasma Sources Science and Technology, 2018, 27, 053001.	3.1	31
81	Differential cross sections for the electron impact excitation of the a1Deltagand b1Sigmag+electronic states of O2. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 4057-4072.	1.5	30
82	Electron-impact excitation of Rydberg and valence electronic states of nitric oxide: II. Integral cross sections. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 809-819.	1.5	30
83	Dynamical (e,2e) studies of tetrahydrofurfuryl alcohol. Journal of Chemical Physics, 2012, 136, 244301.	3.0	30
84	Triply differential (e,2e) studies of phenol. Journal of Chemical Physics, 2014, 141, 124307.	3.0	30
85	Role of electronic excited N2in vibrational excitation of the N2ground state at high latitudes. Journal of Geophysical Research, 2006, 111 , .	3.3	29
86	A study of electron scattering from benzene: Excitation of the 1B1u, 3E2g, and 1E1u electronic states. Journal of Chemical Physics, 2011, 134, 134308.	3.0	29
87	Transport properties of electron swarms in tetrahydrofuran under the influence of an applied electric field. Physical Review A, 2013, 88, .	2.5	29
88	Differential and integral electron scattering cross sections from tetrahydrofuran (THF) over a wide energy range: 1–10 000 eV. European Physical Journal D, 2014, 68, 1.	1.3	29
89	Recommended Positron Scattering Cross Sections for Atomic Systems. Journal of Physical and Chemical Reference Data, 2019, 48, .	4.2	29
90	Investigation into the Valence Electronic Structure of Norbornene Using Electron Momentum Spectroscopy, Green's Function, and Density Functional Theories. Journal of Physical Chemistry A, 2005, 109, 9324-9340.	2.5	28

#	Article	IF	CITATIONS
91	Positron scattering from formic acid. Physical Review A, 2008, 78, .	2.5	28
92	Electron-impact excitation of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mn>5</mml:mn><mml:ms></mml:ms><mml:none></mml:none><mml:mn>2</mml:mn></mml:mrow><mml:mn>1</mml:mn>/ Physical Review A, 2008, 77, .</mml:mrow></mml:math>	2.5	28
93	A study of electron interactions with silicon tetrafluoride: elastic scattering and vibrational excitation cross sections. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 095204.	1.5	28
94	Positron scattering from pyrimidine. Physical Review A, 2013, 88, .	2.5	28
95	On the use of Monte Carlo simulations to model transport of positrons in gases and liquids. Applied Radiation and Isotopes, 2014, 83, 148-154.	1.5	28
96	Electron-photon coincidence studies in magnesium. Journal of Physics B: Atomic, Molecular and Optical Physics, 1989, 22, 1431-1442.	1.5	27
97	A Critical Comparison of Electron Scattering Cross Sections measured by Single Collision and Swarm Techniques. Australian Journal of Physics, 1997, 50, 483.	0.6	27
98	Excitation of the lowest lying , , , , and electronic states in water by 15eV electrons. International Journal of Mass Spectrometry, 2008, 271, 80-84.	1.5	27
99	The role of electron-impact vibrational excitation in electron transport through gaseous tetrahydrofuran. Journal of Chemical Physics, 2015, 142, 124307.	3.0	27
100	Adiabatic-nuclei calculations of positron scattering from molecular hydrogen. Physical Review A, 2017, 95, .	2.5	27
101	Total electron scattering cross sections from <i>para</i> benzoquinone in the energy range 1–200 eV. Physical Chemistry Chemical Physics, 2018, 20, 22368-22378.	2.8	27
102	Absolute differential cross sections for electron impact excitation of the 10.8-11.5 eV energy-loss states of CO2. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 567-587.	1.5	26
103	Orbital based electronic structural signatures of the guanine keto G-7H/G-9H tautomer pair as studied using dual space analysis. Biophysical Chemistry, 2006, 121, 105-120.	2.8	26
104	Absolute Electron Scattering Cross Sections for the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>CF</mml:mi><mml:mn>2</mml:mn></mml:msub> </mml:math> Radical. Physical Review Letters 2008, 100, 063202	7.8	26
105	Physical Review Letters, 2008, 100, 063202 display= inline > <mml:mrow><mml:mi>C</mml:mi><mml:mspace widtn="0.2em<br">/><mml:mo>+</mml:mo><mml:mo><mml:moprescripts /><mml:none /><mml:mn>1<mml:mo>+<<mml:mi><<mml:mi><mml:mi><mml:mi></mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><</mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mo></mml:mn></mml:none </mml:moprescripts </mml:mo></mml:mspace></mml:mrow>	2.5	26
106	width="0.2em"/> <mmhmmultiscripts><mmhmi>is/mmhmi><mmhmms 3="" <br="">Cross-section calculations for positron scattering from pyrimidine over an energy range from 0.1 to 10000 eV. Physical Review A, 2013, 88, .</mmhmms></mmhmi></mmhmmultiscripts>	2.5	26
107	<i>Ab initio</i> electron scattering cross-sections and transport in liquid xenon. Journal Physics D: Applied Physics, 2016, 49, 355201.	2.8	26
108	Deconvolution of Overlapping Features in Electron Energy-loss Spectra: Determination of Absolute Differential Cross Sections for Electron-impact Excitation of Electronic States of Molecules. Australian Journal of Physics, 1997, 50, 525.	0.6	25

#	Article	IF	CITATIONS
109	Electron-driven excitation of O2 under night-time auroral conditions: Excited state densities and band emissions. Planetary and Space Science, 2006, 54, 45-59. Electron-impact excitation of the <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.7</td><td>25</td></mml:math>	1.7	25
110	display="inline"> <mml:mrow><mml:mi>B</mml:mi><mml:mtext> </mml:mtext><mml:msubsup><mml:mrow></mml:mrow><mml:mnone></mml:mnone><mml:mn>1</mml:mn>+</mml:msubsup></mml:mrow> u <mml:mo>+</mml:mo> and <mml: <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td>nultiscripts: 25</td></mml:>		nultiscripts: 25
111	display="inline"> <mml:mrow> <mml:mi>C</mml:mi><mml:mtext> <td>3.0</td><td>25</td></mml:mtext></mml:mrow>	3.0	25
112	A complex phaseshift analysis for elastic scattering of 54.4 eV electrons from sodium. Journal of Physics B: Atomic and Molecular Physics, 1987, 20, 4861-4868.	1.6	24
113	Electron excitation of the Schumann–Runge continuum, longest band, and second band electronic states in O2. Journal of Chemical Physics, 2011, 134, 064311.	3.0	24
114	Electron- and photon-impact ionization of furfural. Journal of Chemical Physics, 2015, 143, 184310.	3.0	24
115	Self-consistency of electron-THF cross sections using electron swarm techniques. Journal of Chemical Physics, 2017, 147, 195103.	3.0	24
116	A Complete Cross Section Data Set for Electron Scattering by Pyridine: Modelling Electron Transport in the Energy Range 0–100 eV. International Journal of Molecular Sciences, 2020, 21, 6947.	4.1	24
117	Excitation of vibrational quanta in water by electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 5033-5044.	1.5	23
118	Total cross-sections for positron and electron scattering from \hat{l}_{\pm} -tetrahydrofurfuryl alcohol. New Journal of Physics, 2011, 13, 063019.	2.9	23
119	Low energy positron interactions with uracilâ€"Total scattering, positronium formation, and differential elastic scattering cross sections. Journal of Chemical Physics, 2014, 141, 034306.	3.0	23
120	Differential cross sections for intermediate-energy electron scattering from \hat{l}_{\pm} -tetrahydrofurfuryl alcohol: Excitation of electronic-states. Journal of Chemical Physics, 2014, 141, 024301.	3.0	23
121	Positron kinetics in an idealized PET environment. Scientific Reports, 2015, 5, 12674.	3.3	23
122	The electron-furfural scattering dynamics for 63 energetically open electronic states. Journal of Chemical Physics, 2016, 144, 124310.	3.0	23
123	Electron impact ionization of 1-propanol. International Journal of Mass Spectrometry, 2017, 422, 32-41.	1.5	23
124	Electron energy-loss spectra of coupled electronic states: Effects of Rydberg-valence interactions inO2. Physical Review A, 2001, 63, .	2.5	22
125	Infrared Auroral Emissions Driven by Resonant Electron Impact Excitation of NO Molecules. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	22
126	An experimental and theoretical investigation into positron and electron scattering from formaldehyde. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 195202.	1.5	22

#	Article	IF	Citations
127	Very low-energy total cross sections and the experimental scattering length for the positron–xenon system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 085203.	1.5	22
128	Negative ion formation through dissociative electron attachment to the group IV tetrafluorides: Carbon tetrafluoride, silicon tetrafluoride and germanium tetrafluoride. International Journal of Mass Spectrometry, 2013, 339-340, 45-53.	1.5	22
129	Investigating the role of vibrational excitation in simulating charged-particle tracks in liquid pyrimidine. European Physical Journal D, 2016, 70, 1.	1.3	22
130	A new normalization method for electron collision cross sections measured using skimmed supersonic jet beams. Measurement Science and Technology, 2007, 18, 2783-2790.	2.6	21
131	Elastic electron scattering from 3-hydroxytetrahydrofuran: experimental and theoretical studies. New Journal of Physics, 2008, 10, 053002.	2.9	21
132	Integral cross sections for electron impact excitation of the $<$ sup> $1sup>1\lesup>1\lesup>1\lesup>1\lesup>1\lesup>1\lesub>1\gesub>1\lesub>1\gesub>1\gesub>1\gesub>1\gesub>1\gesub>1\gesub>1\gesub1\ges$	1.5	21
133	An apparatus for measuring absolute electron scattering cross sections for molecular radicals. Measurement Science and Technology, 2008, 19, 085801.	2.6	21
134	Electron impact vibrational excitation of carbon monoxide in the upper atmospheres of Mars and Venus. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	21
135	Modelling single positron tracks in Ar. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 045207.	1.5	21
136	A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra. European Physical Journal D, 2013, 67, 1.	1.3	21
137	A comprehensive and comparative study of elastic electron scattering from OCS and CS2 in the energy region from 1.2 to 200 eV. Journal of Chemical Physics, 2013, 138, 054302.	3.0	21
138	Electron impact ionization dynamics of <i>para</i> -benzoquinone. Journal of Chemical Physics, 2016, 145, 164306.	3.0	21
139	A complete data set for the simulation of electron transport through gaseous tetrahydrofuran in the energy range 1–100 \$\$hbox {eV}\$\$. European Physical Journal D, 2021, 75, 1.	1.3	21
140	New electron-energy transfer rates for vibrational excitation of O2. New Journal of Physics, 2003, 5, 114-114.	2.9	20
141	Experimental and theoretical cross sections for positron collisions with 3-hydroxy-tetrahydrofuran. Journal of Chemical Physics, 2013, 138, 074302.	3.0	20
142	Determining cross sections from transport coefficients using deep neural networks. Plasma Sources Science and Technology, 2020, 29, 055009.	3.1	20
143	Electron scattering from pyrazine: Elastic differential and integral cross sections. Journal of Chemical Physics, 2012, 137, 204307.	3.0	19
144	Differential cross sections for low-energy elastic electron scattering from the CF ₃ radical. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 245203.	1.5	19

#	Article	IF	CITATIONS
145	Low-energy positron and electron scattering from nitrogen dioxide. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 235202.	1.5	19
146	Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and <i>ab initio</i> calculations. Journal of Chemical Physics, 2015, 143, 144308.	3.0	19
147	Electron impact ionization of 1-butanol: II. Total ionization cross sections and appearance energies. International Journal of Mass Spectrometry, 2018, 430, 44-51.	1.5	19
148	Vibrational excitation in isoelectronic molecules by electron impact: CO and N2. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 3541-3549.	1.5	18
149	Differential and integral cross sections for excitation of the electronic states of nitric oxide by low-energy electron impact: Observation of alr2a†'2l excitation process. Physical Review A, 1996, 54, 2977-2982.	2.5	18
150	An electron momentum spectroscopy and density functional theory study of the outer valence electronic structure of stella-2,6-dione. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 3155-3171.	1.5	18
151	Total cross sections for positron scattering from benzene, cyclohexane, and aniline. Physical Review A, 2007, 76, .	2.5	18
152	Role of excited N ₂ in the production of nitric oxide. Journal of Geophysical Research, 2007, 112, .	3.3	18
153	Total cross section measurements for positron scattering from acetone. PMC Physics B, 2010, 3, .	0.9	18
154	Experimental and theoretical cross sections for positron scattering from the pentane isomers. Journal of Chemical Physics, 2016, 144, 084301.	3.0	18
155	Low energy electron transport in furfural. European Physical Journal D, 2017, 71, 1.	1.3	18
156	Comprehensive Experimental and Theoretical Study into the Complete Valence Electronic Structure of Norbornadiene. Journal of Physical Chemistry A, 2002, 106, 9573-9581.	2.5	17
157	Definitive confirmation for through-space bond dominance in the outermost ⊩e-orbitals of norbornadiene. Journal of Electron Spectroscopy and Related Phenomena, 2002, 123, 389-395.	1.7	17
158	Positron scattering from carbon dioxide. Physical Review A, 2006, 74, .	2.5	17
159	Positron scattering from chiral enantiomers. Physical Review A, 2012, 85, .	2.5	17
160	Anomalously large low-energy elastic cross sections for electron scattering from the CF3 radical. Chemical Physics Letters, 2013, 568-569, 55-58.	2.6	17
161	A joint theoretical and experimental study for elastic electron scattering from 1,4-dioxane. Journal of Chemical Physics, 2013, 139, 014308.	3.0	17
162	Current prospects on Low Energy Particle Track Simulation for biomedical applications. Applied Radiation and Isotopes, 2014, 83, 159-164.	1.5	17

#	Article	IF	Citations
163	Cross sections for electron scattering from <mml:math altimg="si15.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>î±</mml:mi></mml:mrow></mml:math> -tetrahydrofurfuryl alcohol. Chemical Physics Letters, 2014, 608, 161-166.	2.6	17
164	An <i>ab initio</i> investigation for elastic and electronically inelastic electron scattering from <i>para</i> -benzoquinone. Journal of Chemical Physics, 2018, 149, 174308.	3.0	17
165	Exploring the electronic structure of 2,6-stelladione from momentum space I: the p-dominant molecular orbitals in the outer valence shell. Chemical Physics Letters, 2003, 382, 217-225.	2.6	16
166	Differential and integral cross sections for elastic electron scattering from CF2. Physical Review A, 2009, 79, .	2.5	16
167	Elastic electron scattering from <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">CF</mml:mi><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow><th>,2:5 mml:m</th><th>116 116</th></mml:math>	, 2:5 mml:m	116 116
168	Positron scattering from the cyclic ethers oxirane, 1,4-dioxane, and tetrahydropyran. Journal of Chemical Physics, 2012, 136, 124305.	3.0	16
169	Positron and electron collisions with nitrous oxide: Measured and calculated cross sections. Physical Review A, 2013, 88, .	2.5	16
170	Electronic States of Tetrahydrofurfuryl Alcohol (THFA) As Studied by VUV Spectroscopy and Ab Initio Calculations. Journal of Physical Chemistry A, 2014, 118, 6425-6434.	2.5	16
171	Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural. Journal of Chemical Physics, 2016, 144, 144303.	3.0	16
172	Experimental and theoretical analysis for total electron scattering cross sections of benzene. Journal of Chemical Physics, 2019, 151, 084310.	3.0	16
173	Resolution of a discrepancy between low-energy differential cross section measurements for elastic electron scattering from. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 1813-1817.	1.5	15
174	Elastic cross sections for electron scattering from iodomethane. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 045207.	1.5	15
175	Dynamical (e,2e) studies of tetrahydropyran and 1,4-dioxane. Journal of Chemical Physics, 2014, 140, 214312.	3.0	15
176	N2 state population in Titan's atmosphere. Icarus, 2015, 260, 29-59.	2.5	15
177	Integral cross sections for electron impact excitation of vibrational and electronic states in phenol. Journal of Chemical Physics, 2015, 142, 194305.	3.0	15
178	Differential cross sections for electron-impact vibrational-excitation of tetrahydrofuran at intermediate impact energies. Journal of Chemical Physics, 2015, 142, 124306.	3.0	15
179	Integral Cross Sections for Electron–Magnesium Scattering Over a Broad Energy Range (0–5000 eV). Journal of Physical and Chemical Reference Data, 2018, 47, 043104.	4.2	15
180	Momentum distributions and molecular property information for trans 1,3 butadiene: An electron momentum spectroscopy and density functional theory investigation. Journal of Chemical Physics, 1998, 108, 1859-1873.	3.0	14

#	Article	IF	Citations
181	Differential cross sections for rovibrational(v′=0→1,2,3,4)excitation of the electronic ground state ofO2by electron impact. Physical Review A, 1998, 57, 208-214.	2.5	14
182	Differential electron scattering from the (010) excited vibrational mode of CO2. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 5779-5788.	1.5	14
183	A high-resolution electron momentum spectroscopy and density functional theory study into the complete valence electronic structure of allene. Journal of Computational Chemistry, 2001, 22, 1321-1333.	3.3	14
184	Electron impact contribution to infrared NO emissions in auroral conditions. Geophysical Research Letters, 2007, 34, .	4.0	14
185	Electron excitation and energy transfer rates for H2O in the upper atmosphere. PMC Physics B, 2009, 2,	0.9	14
186	Electron momentum spectroscopy of formic acid. Chemical Physics Letters, 2009, 474, 23-27.	2.6	14
187	A-band methyl halide dissociation via electronic curve crossing as studied by electron energy loss spectroscopy. Journal of Chemical Physics, 2010, 133, 054304.	3.0	14
188	Electron impact excitation of the \tilde{A} £ 3B1u electronic state in C2H4: An experimentally benchmarked system?. Journal of Chemical Physics, 2012, 136, 184313.	3.0	14
189	Spatial profiles of positrons injected at low energies into water: influence of cross section models. Plasma Sources Science and Technology, 2017, 26, 045010.	3.1	14
190	Total cross section of furfural by electron impact: Experiment and theory. Journal of Chemical Physics, 2017, 147, 054301.	3.0	14
191	A Relativistic Complex Optical Potential Calculation for Electron–Beryllium Scattering: Recommended Cross Sections. Journal of Physical and Chemical Reference Data, 2018, 47, .	4.2	14
192	Electron impact ionization and fragmentation of biofuels. European Physical Journal D, 2020, 74, 1.	1.3	14
193	Electron impact excitation of nitric oxide under auroral conditions. Geophysical Research Letters, 1998, 25, 1495-1498.	4.0	13
194	Integral cross sections for electron impact excitation of the Herzberg pseudocontinuum of molecular oxygen. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, L157-L162.	1.5	13
195	Low-energy positron scattering from methanol and ethanol: Total cross sections. Physical Review A, 2008, 78, .	2.5	13
196	Carbon dioxide electron cooling rates in the atmospheres of Mars and Venus. Journal of Geophysical Research, 2008, 113 , .	3.3	13
197	Electron-impact excitation of the <mml:math display="inline" xmins:mml="http://www.w3.org/1998/Math/MathMC"><mml:mrow><mml:mrow><mml:mo><mml:mn>5</mml:mn><mml:mn><mml:msup><mml:miml:miml:miml:miml:miml:miml:miml:< td=""><td>i>d2.5</td><td>:mi><mml:mn 13</mml:mn </td></mml:miml:miml:miml:miml:miml:miml:miml:<></mml:msup></mml:mn></mml:mo></mml:mrow></mml:mrow></mml:math>	i>d2.5	:mi> <mml:mn 13</mml:mn
198	A, 2008, 76, . Electron interactions with tetrahydrofuran. Journal of Physics: Conference Series, 2012, 373, 012010.	0.4	13

#	Article	IF	CITATIONS
199	Positron collisions with ethene. Physical Review A, 2012, 86, .	2.5	13
200	Cross sections for positron scattering from ethane. Physical Review A, 2013, 87, .	2.5	13
201	Intermediate-energy differential and integral cross sections for vibrational excitation in α-tetrahydrofurfuryl alcohol. Journal of Chemical Physics, 2014, 140, 214306.	3.0	13
202	Elastic scattering and vibrational excitation for electron impact on <i>para</i> -benzoquinone. Journal of Chemical Physics, 2017, 147, 244304.	3.0	13
203	Integral Cross Sections for Electron–Zinc Scattering over a Broad Energy Range (0.01–5000 eV). Journal of Physical and Chemical Reference Data, 2020, 49, .	4.2	13
204	Self-consistent electron–THF cross sections derived using data-driven swarm analysis with a neural network model. Plasma Sources Science and Technology, 2020, 29, 105008.	3.1	13
205	Determination of differential cross sections for electron-impact excitation of electronic states of molecular oxygen. Physical Review A, 2000, 61, .	2.5	12
206	Excitation of the A2 $\hat{1}$ £+, C2 $\hat{1}$ and D2 $\hat{1}$ £+ Rydberg-electronic states in NO by 100eV electrons. Chemical Physics Letters, 2007, 444, 34-38.	2.6	12
207	Electron cooling by carbon monoxide in the atmospheres of Mars and Venus. PMC Physics B, 2008, 1, .	0.9	12
208	An (e,2e) coincidence study of formic acid monomer and dimer. Chemical Physics Letters, 2008, 451, 18-24.	2.6	12
209	Electron impact excitation of carbon monoxide in comet Haleâ€Bopp. Geophysical Research Letters, 2009, 36, .	4.0	12
210	Cross sections for elastic scattering of electrons by CF3Cl, CF2Cl2, and CFCl3. Journal of Chemical Physics, 2013, 138, 214305.	3.0	12
211	Intermediate energy electron impact excitation of composite vibrational modes in phenol. Journal of Chemical Physics, 2015, 142, 194302.	3.0	12
212	An experimental and theoretical investigation into the electronically excited states of para-benzoquinone. Journal of Chemical Physics, 2017, 146, 184303.	3.0	12
213	Positron scattering from pyridine. Journal of Chemical Physics, 2018, 148, 144308.	3.0	12
214	Electron impact excitation of the 33P state in magnesium. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 3573-3580.	1.5	11
215	Closed-form expressions for state-to-state charge-transfer differential cross sections in a modified Faddeev three-body approach. Physical Review A, 2007, 75, .	2.5	11
216	Resonant vibrational excitation of CH $<$ sub $>$ 3 $<$ /sub $>$ X $(X = F, Cl, Br and I)$ by low-energy electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 065205.	1.5	11

#	ARTICLE Benchmarking electronic-state excitation cross sections for electron-IN <mmi:math< th=""><th>IF</th><th>CITATIONS</th></mmi:math<>	IF	CITATIONS
217	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline">< <mml:mrow><mml:mrow><mml:mrow =""></mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow> <	2.5	11
218	Interaction model for electron scattering from ethylene in the energy range 1–10000eV. Chemical Physics Letters, 2013, 560, 22-28.	2.6	11
219	Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine. Journal of Chemical Physics, 2015, 143, 094304.	3.0	11
220	Theoretical and experimental differential cross sections for electron impact excitation of the electronic bands of furfural. Journal of Chemical Physics, 2016, 144, 124309.	3.0	11
221	Electron-impact electronic-state excitation of <i>para</i> -benzoquinone. Journal of Chemical Physics, 2018, 148, 124312.	3.0	11
222	Electron impact ionization of 1-butanol: I. Mass spectra and partial ionization cross sections. International Journal of Mass Spectrometry, 2018, 430, 158-167.	1.5	11
223	Negative ion formation through dissociative electron attachment to the group IV tetrachlorides: Carbon tetrachloride, silicon tetrachloride and germanium tetrachloride. International Journal of Mass Spectrometry, 2018, 426, 12-28.	1.5	11
224	Assessment of the self-consistency of electron-THF cross sections using electron swarm techniques: Mixtures of THF–Ar and THF–N2. Journal of Chemical Physics, 2019, 151, .	3.0	11
225	Experimental and theoretical cross sections for elastic electron scattering from zinc. Physical Review A, 2019, 99, .	2.5	11
226	Resonance phenomena in electron impact excitation of the fundamental vibrational modes of water. Chemical Physics Letters, 2000, 319, 701-707.	2.6	10
227	Intramolecular proton transfer in adenine imino tautomers. Molecular Simulation, 2006, 32, 1261-1270.	2.0	10
228	Superelastic electron scattering from laser-excited cesium atoms. Physical Review A, 2007, 75, .	2.5	10
229	Benchmark differential cross sections for electron impact excitation of the $\langle i \rangle n \langle i \rangle = 2$ states in helium at near-ionization- threshold energies. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 145202.	1.5	10
230	Effects of alkyl side chains on properties of aliphatic amino acids probed using quantum chemical calculations. Journal of Synchrotron Radiation, 2011, 18, 733-742.	2.4	10
231	Electron impact excitation of the low-lying $3s[3/2]1$ and $3s\hat{a}\in^2[1/2]1$ levels in neon for incident energies between 20 and 300 eV. Journal of Chemical Physics, 2013, 139, 184301.	3.0	10
232	Low-Energy Positron Scattering from Dihydropyran. Journal of Physical Chemistry A, 2009, 113, 14251-14254.	2.5	9
233	Electronâ€impact excitation heating rates in the atmosphere of Titan. Journal of Geophysical Research, 2010, 115, . Resolution of a significant discrepancy in the electron impact excitation of the <mml:math< td=""><td>3.3</td><td>9</td></mml:math<>	3.3	9
234	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si5.gif" overflow="scroll"> <mml:mrow><mml:mn>3</mml:mn><mml:mi>s</mml:mi>s><mml:msub><mml:mrow><mml:mo><mml:mo><mml:mn>2</mml:mn></mml:mo><mml:mn>2</mml:mn></mml:mo><mml:mo></mml:mo></mml:mrow></mml:msub><td>2.0</td><td>9 :/mml:math></td></mml:mrow>	2.0	9 :/mml:math>

#	Article	IF	CITATIONS
235	Excitation of vibrational quanta in furfural by intermediate-energy electrons. Journal of Chemical Physics, 2015, 143, 224304.	3.0	9
236	Cross sections for positron and electron collisions with an analog of the purine nucleobases: Indole. Physical Review A, 2015, 91, .	2.5	9
237	Electron scattering cross sections from nitrobenzene in the energy range 0.4–1000 eV: the role of dipole interactions in measurements and calculations. Physical Chemistry Chemical Physics, 2020, 22, 13505-13515.	2.8	9
238	Foundations and interpretations of the pulsed-Townsend experiment. Plasma Sources Science and Technology, 2021, 30, 035017.	3.1	9
239	Elastic and inelastic scattering of low-energy electrons from gas-phase $\$ hbox $\{C\}_{\text{mathbf }}$: elastic scattering angular distributions and coexisting solid-state features revisited. European Physical Journal D, 2021, 75, 1.	1.3	9
240	Vibrational excitation of ethane and ethene by electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 23-35.	1.5	8
241	Structural impact on the methano bridge in norbornadiene, norbornene and norbornane. Journal of Physics and Chemistry of Solids, 2004, 65, 2041-2054.	4.0	8
242	Prediction of electron-driven VUV emission in the earth's atmosphere. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 119-122.	1.7	8
243	Vibrational excitation functions for inclastic and superclastic electron scattering from the ground-electronic state in hot <mml:math altimg="si19.gif" display="inline" eyerflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"></mml:math>	2.6 ow> <mml< td=""><td>8 :mn>2</td></mml<>	8 :mn>2
244	display="inline"> <mml:mrow><mml:mo stretchy="false">(<mml:mn>3</mml:mn><mml:msup><mml:mi>d</mml:mi><mml:mrow><mml:mn></mml:mn></mml:mrow></mml:msup></mml:mo </mml:mrow>		
245	/> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> <mml:msub><mml:mi>S</mml:mi><mml:mrov .<="" 2010,="" 37,="" 557.7â€nm="" 81,="" a,="" and="" auroral="" contributions="" geophysical="" ionospheric="" kinetic,="" letters,="" modeling="" nightglow.="" of="" physical="" research="" review="" td="" the="" to=""><td>w><mml:r 4.0</mml:r </td><td>mn>1</td></mml:mrov></mml:msub>	w> <mml:r 4.0</mml:r 	mn>1
246	Electron impact excitation of higher energy states of molecular oxygen in the atmosphere of Europa. European Physical Journal D, 2012, 66, 1.	1.3	8
247	Low-energy positron scattering from iodomethane. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 175202.	1.5	8
248	Atomic Scattering Data and Their Evaluation: Strategies for Obtaining Complete Cross-Section Sets for Electron Collision Processes. Fusion Science and Technology, 2013, 63, 385-391.	1.1	8
249	A technique to determine the thermal stability of uracil and uracil derivatives in a molecular beam. International Journal of Mass Spectrometry, 2016, 409, 73-80.	1.5	8
250	Total cross sections for electron scattering by 1-propanol at impact energies in the range 40-500 eV. Journal of Chemical Physics, 2017, 147, 194307.	3.0	8
251	Electron scattering from 1-butanol at intermediate impact energies: Total cross sections. Journal of Chemical Physics, 2019, 150, 194307.	3.0	8
252	Investigating the sensitivity of nitric oxide infrared emissions to electron impact. Journal of Physics: Conference Series, 2008, 115, 012003.	0.4	7

#	Article	IF	CITATIONS
253	Electron and positron scattering from biomolecules. Journal of Physics: Conference Series, 2009, 194, 012034.	0.4	7
254	Cross Sections for Positron Impact with 2,2,4-Trimethylpentane. Journal of Physical Chemistry A, 2014, 118, 6466-6472.	2.5	7
255	Valence and lowest Rydberg electronic states of phenol investigated by synchrotron radiation and theoretical methods. Journal of Chemical Physics, 2016, 145, 034302.	3.0	7
256	Integral elastic, vibrational-excitation, electronic-state excitation, ionization, and total cross sections for electron scattering from <i>para</i> benzoquinone. Journal of Chemical Physics, 2018, 148, 204305.	3.0	7
257	Positron Scattering from Gas-Phase Beryllium and Magnesium: Theory, Recommended Cross Sections, and Transport Simulations. Journal of Physical and Chemical Reference Data, 2019, 48, .	4.2	7
258	A dynamical (e,2e) investigation into the ionization of the outermost orbitals of R-carvone. Journal of Chemical Physics, 2019, 151, 124306.	3.0	7
259	Joint theoretical and experimental study on elastic electron scattering from bismuth. Physical Review A, 2020, 101, .	2.5	7
260	An improved set of electron-THFA cross sections refined through a neural network-based analysis of swarm data. Journal of Chemical Physics, 2021, 154, 084306.	3.0	7
261	Positron scattering from pyrazine. Physical Review A, 2021, 104, .	2.5	7
262	Excitation of the 3p state of neon by high-resolution electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, L387-L391.	1.5	6
263	Differential cross sections for electron impact excitation of the Herzberg pseudocontinuum of molecular oxygen. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 3793-3800.	1.5	6
264	High-resolution electron momentum spectroscopy of molecules. Perkin Transactions II RSC, 2002, , 1-22.	1.1	6
265	An experimental and theoretical study into the valence electronic structure of bicyclo[2.2.1]hepta-2,5-dione. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 2411-2429.	1.5	6
266	Integral cross sections for electron-impact excitation of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>4</mml:mn><mml:mtext> </mml:mtext><mml:mmultiscripts><mr></mr> ><mml:mnone =""> <mml:mn>2</mml:mn></mml:mnone></mml:mmultiscripts></mml:mrow></mml:math> state in copper.	ml:m2n,i5-P <td>mmd:mi><mm< td=""></mm<></td>	mm d: mi> <mm< td=""></mm<>
267	Physical Review A, 2009, 80, . Electron interaction cross sections for a low-temperature †plasma-like†gas mixture. Plasma Sources Science and Technology, 2010, 19, 065021.	3.1	6
268	Negative ion formation through dissociative electron attachment to the group IV tetrabromides: Carbon tetrabromide, silicon tetrabromide and germanium tetrabromide. International Journal of Mass Spectrometry, 2014, 365-366, 275-280.	1.5	6
269	Electron-impact vibrational excitation of the hydroxyl radical in the nighttime upper atmosphere. Planetary and Space Science, 2018, 151, 11-18.	1.7	6
270	Electron impact ionization of R-carvone: I. Mass spectra and appearance energies. International Journal of Mass Spectrometry, 2020, 456, 116395.	1.5	6

#	Article	IF	CITATIONS
271	Recommended Cross Sections for Electron–Indium Scattering. Journal of Physical and Chemical Reference Data, 2021, 50, .	4.2	6
272	Positron scattering from vinyl acetate. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 175202.	1.5	6
273	Non-equilibrium calculations of atmospheric processes initiated by electron impact Journal of Physics: Conference Series, 2007, 71, 012011.	0.4	5
274	Low energy lepton scattering: recent results for electron and positron interactions. Journal of Physics: Conference Series, 2008, 133, 012001.	0.4	5
275	Excitation of hydrogen atoms at intermediate and high energies by proton impact under a three-body Born–Faddeev-type formalism. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 125203.	1.5	5
276	Benchmark Integral Cross Sections for Electron Impact Excitation of the $\langle i \rangle n \langle i \rangle = 2$ States in Helium. Plasma Science and Technology, 2010, 12, 348-352.	1.5	5
277	Polarization of Lyman-l± and Balmer-l± emission in protonâ€"hydrogen collisions: a study using first-order Bornâ€"Faddeev-type equations. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 205201.	1.5	5
278	Electron-impact excitation of the ($5s25p$) $P1/22\hat{a}\dagger'(5s26s$) $S1/22$ transition in indium: Theory and experiment. Physical Review A, 2020, 102, .	2.5	5
279	Absolute Photoabsorption Cross-Sections of Methanol for Terrestrial and Astrophysical Relevance. Journal of Physical Chemistry A, 2020, 124, 8496-8508.	2.5	5
280	Positronium formation as a three-body reaction. I. The second-order positron-electron interaction amplitude. Journal of Mathematical Physics, 2007, 48, 033506.	1.1	4
281	Application of the <i>BEf < /i>-scaling approach to electron impact excitation of diople-allowed electronic states in molecules. Journal of Physics: Conference Series, 2008, 115, 012004.</i>	0.4	4
282	Positronium formation as a three-body reaction. II. The second-order nuclear amplitudes. Journal of Mathematical Physics, 2009, 50, .	1.1	4
283	The vibrational excitation of hot molecules by low energy electron impact. Journal of Physics: Conference Series, 2010, 204, 012002.	0.4	4
284	Influence of functional groups on the Cα–Cβ chain of l-phenylalanine and its derivatives. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 619, 143-146.	1.6	4
285	Electronic structure and VUV photoabsorption measurements of thiophene. Journal of Chemical Physics, 2019, 150, 064303.	3.0	4
286	Electron impact ionization of R-carvone: III. Absolute total ionization cross sections. International Journal of Mass Spectrometry, 2021, 464, 116556.	1.5	4
287	Positron Scattering from the Group IIB Metals Zinc and Cadmium: Recommended Cross Sections and Transport Simulations. Journal of Physical and Chemical Reference Data, 2021, 50, .	4.2	4
288	Absolute partial ionization cross sections for electron impact of R-carvone from threshold to 100 eV. European Physical Journal D, 2021, 75, 1.	1.3	4

#	Article	IF	CITATIONS
289	Toward a complete and comprehensive cross section database for electron scattering from NO using machine learning. Journal of Chemical Physics, 2021, 155, 084305.	3.0	4
290	Total Cross Sections for Positron Scattering from Bio-Molecules. Biological and Medical Physics Series, 2012, , 155-163.	0.4	4
291	Low energy elastic electron scattering from CF3Br molecules. Journal of Chemical Physics, 2015, 142, 124310.	3.0	4
292	Simulating the Feasibility of Using Liquid Micro-Jets for Determining Electron–Liquid Scattering Cross-Sections. International Journal of Molecular Sciences, 2022, 23, 3354.	4.1	4
293	Electronic excitation of benzene by low energy electron impact and the role of higher lying Rydberg states. European Physical Journal D, 2021, 75, 1.	1.3	4
294	Differential electron scattering from the (010) excited vibrational mode of N2O. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, L481-L488.	1,5	3
295	Role of Excited Nitrogen In The Ionosphere. AIP Conference Proceedings, 2006, , .	0.4	3
296	Progress towards the measurement of absolute elastic electron-molecular radical scattering cross sections. Journal of Physics: Conference Series, 2007, 86, 012005.	0.4	3
297	Vibrational excitation functions for inelastic and superelastic electron scattering from the ground electronic state in hot N2O. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 195208.	1.5	3
298	Calculated meteoroid production of hydroxyl in the atmosphere of Jupiter. Icarus, 2019, 326, 162-169.	2.5	3
299	The electronic excited states of dichloromethane in the 5.8-10.8 eV energy range investigated by experimental and theoretical methods. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107172.	2.3	3
300	Electron-impact excitation of the $(4d105s)S1/22\hat{a}\dagger'(4d95s2)D3/22$ and $(4d105s)S1/22\hat{a}\dagger'(4d106s)S1/22$ transition in silver: Experiment and theory. Physical Review A, 2021, 104, .	ons 2.5	3
301	The Elastic Scattering of 20 eV Electrons from Magnesium. Australian Journal of Physics, 1995, 48, 71.	0.6	3
302	Measurements of Electron Collision Cross Sections of Relevance to Plasma and Gas Discharge Physics. Japanese Journal of Applied Physics, 2006, 45, 8183-8187.	1.5	2
303	On the role of electron-driven processes in planetary atmospheres and comets. Physica Scripta, 2009, 80, 058101.	2.5	2
304	Nonequilibrium calculations of the role of electron impact in the production of NO and its emissions. Journal of Physics: Conference Series, 2009, 162, 012005.	0.4	2
305	Recent progress in electron scattering from atoms and molecules. , 2014, , .		2
306	Kinetic Phenomena in Transport of Electrons and Positrons in Gases caused by the Properties of Scattering Cross Sections. Journal of Physics: Conference Series, 2014, 488, 012047.	0.4	2

#	Article	IF	Citations
307	Quasi-four-particle first-order Faddeev-Watson-Lovelace terms in proton-helium scattering. European Physical Journal Plus, 2017, 132, 1.	2.6	2
308	Total cross section measurements for electron scattering from dichloromethane. Journal of Chemical Physics, 2018, 149, 244304.	3.0	2
309	Thermal induced NDC of electron swarms in N2 and N2-like gases: the role of temperature and collision operator approximations. Plasma Sources Science and Technology, 2019, 28, 115005.	3.1	2
310	Positron and Electron Interactions and Transport in Biological Media. Biological and Medical Physics Series, 2012, , 227-238.	0.4	2
311	Transport of electrons and propagation of the negative ionisation fronts in indium vapour. Plasma Sources Science and Technology, 0, , .	3.1	2
312	Inclusion of Electron Interactions by Rate Equations in Chemical Models. Atoms, 2022, 10, 62.	1.6	2
313	Production of vibrationally excited N2 by electron impact. Planetary and Space Science, 2004, 52, 815-815.	1.7	1
314	Towards Electron Momentum Spectroscopy Studies of Clusters: A New Apparatus. AIP Conference Proceedings, 2006, , .	0.4	1
315	Comment on †Electron scattering and ionization of NO, N2O, NO2, NO3and N2O5molecules: theoretical cross sections†. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 1951-1952.	1.5	1
316	Positron Scattering from Molecules. , 2009, , .		1
317	Application of Haar multi-resolution analysis in subspace <i>V</i> ₂ to calculate Faddeev partial amplitudes of electron transfer in three-body proton-hydrogen scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 165201.	1.5	1
318	On the role of electron-driven processes in planetary and cometary atmospheres. Journal of Physics: Conference Series, 2012, 399, 012018.	0.4	1
319	Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: II. Second-order non-Thomas mechanisms and the cross sections. European Physical Journal Plus, 2018, 133, 1.	2.6	1
320	Interaction of photoionisation and meteoric input in the atmosphere of Jupiter. European Physical Journal D, 2019, 73, 1.	1.3	1
321	Recent studies with electrons, positrons and positronium. European Physical Journal D, 2020, 74, 1.	1.3	1
322	A comparison of experimental and theoretical low energy positron scattering from furan. Journal of Chemical Physics, 2020, 153, 244303.	3.0	1
323	A dynamical (e,2e) investigation into the ionization of pyrazine. Chemical Physics Letters, 2021, 781, 139000.	2.6	1
324	Low-lying electronic states of ethanol investigated by theoretical and synchrotron radiation methods. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 285, 108170.	2.3	1

#	Article	IF	CITATIONS
325	Electron-impact excitation of the 5 \$varvec{^2extbf{S}_{1/2} ightarrow 5 ^2extbf{P}_{1/2}}\$\$ and 5 \$\$varvec{^2extbf{P}_{3/2}}\$\$ transitions in rubidium by 40 eV electrons: theory and experiment. European Physical Journal D, 2022, 76, .	1.3	1
326	Super elastic electron scattering from alkali atoms. AIP Conference Proceedings, 2002, , .	0.4	0
327	Understanding the Role of Electron-driven Processes in Atmospheric Behaviour. AIP Conference Proceedings, 2004, , .	0.4	0
328	Electron Collisions in our Atmosphere $\hat{a} \in ``How the Microscopic Drives the Macroscopic. AIP Conference Proceedings, 2005, , .$	0.4	0
329	Data Needs and Modeling of the Upper Atmosphere. AIP Conference Proceedings, 2007, , .	0.4	0
330	Electron momentum spectroscopy in the study of intermolecular interactions. Journal of Physics: Conference Series, 2008, 141, 012011.	0.4	0
331	Absolute elastic differential and integral cross sections for the CF ₂ radical for electron impact energies below 20 eV. Journal of Physics: Conference Series, 2009, 194, 052011.	0.4	0
332	Vibrational excitation of triatomic molecules near the shape resonance region. Journal of Physics: Conference Series, 2012, 388, 052046.	0.4	0
333	Electron scattering from tetrahydrofuran. Journal of Physics: Conference Series, 2012, 388, 052077.	0.4	0
334	Trends in Positron Scattering from Biomolecules. Journal of Physics: Conference Series, 2012, 388, 072013.	0.4	0
335	Total electron scattering cross sections for pyrimidine and pyrazine as measured using a magnetically confined experimental system. Journal of Physics: Conference Series, 2014, 488, 012048.	0.4	0
336	Electron interactions with Radicals of Technological Interest. Journal of Physics: Conference Series, 2014, 488, 052002.	0.4	0
337	Low-energy positron and electron scattering from tetrahydrofuran and 3-hydroxy-tetrahydrofuran. Journal of Physics: Conference Series, 2014, 488, 072007.	0.4	0
338	Positron scattering from Biomolecules. Journal of Physics: Conference Series, 2015, 635, 072038.	0.4	0
339	Electron impact cross-sections for biomolecules - completeness and self-consistency via swarm analysis. Journal of Physics: Conference Series, 2015, 635, 072079.	0.4	0
340	Three-body treatment of the Z-dependence for excitation cross sections in Aq+ + H (1s) collisions $\hat{a} \in \mathbb{C}^n$ Excitation from the ground to the 2s and 3s states. European Physical Journal D, 2015, 69, 1.	1.3	0
341	Past successes and future prospects for experimental electron scattering from fluorocarbon radicals., 2015,,.		0
342	The electronic structure of bicyclo[2.2.2]octa-2,5-dione. Chemical Physics Letters, 2020, 757, 137877.	2.6	0

#	Article	IF	CITATIONS
343	A combined experimental and theoretical study of the lowest-lying valence, Rydberg and ionic electronic states of 2,4,6-trichloroanisole. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 271, 107751.	2.3	O
344	ELECTRON DRIVEN PROCESSES IN ATMOSPHERIC BEHAVIOUR. , 2006, , .		0
345	Post-collision and inter-nuclear effects on the fully differential cross sections of helium atom single ionization by heavy ion impact. European Physical Journal Plus, 2022, 137, .	2.6	0