Wade S Kingery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6100359/publications.pdf

Version: 2024-02-01

61984 82547 5,382 77 43 72 citations h-index g-index papers 4059 77 77 77 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Autonomic Regulation of Nociceptive and Immunologic Changes in a Mouse Model of Complex Regional Pain Syndrome. Journal of Pain, 2022, 23, 472-486.	1.4	10
2	Mice lacking substance P have normal bone modeling but diminished bone formation, increased resorption, and accelerated osteopenia with aging. Bone, 2021, 144, 115806.	2.9	6
3	Dimethyl Fumarate Reduces Oxidative Stress and Pronociceptive Immune Responses in a Murine Model of Complex Regional Pain Syndrome. Anesthesia and Analgesia, 2021, 132, 1475-1485.	2.2	6
4	IL-6 signaling mediates the germinal center response, IgM production and nociceptive sensitization in male mice after tibia fracture. Brain, Behavior, and Immunity, 2021, 94, 148-158.	4.1	14
5	C5a complement and cytokine signaling mediate the pronociceptive effects of complex regional pain syndrome patient IgM in fracture mice. Pain, 2021, 162, 1400-1415.	4.2	13
6	Complex regional pain syndrome patient immunoglobulin M has pronociceptive effects in the skin and spinal cord of tibia fracture mice. Pain, 2020, 161, 797-809.	4.2	27
7	Germinal center formation, immunoglobulin production and hindlimb nociceptive sensitization after tibia fracture. Brain, Behavior, and Immunity, 2020, 88, 725-734.	4.1	10
8	Morphine Exacerbates Postfracture Nociceptive Sensitization, Functional Impairment, and Microglial Activation in Mice. Anesthesiology, 2019, 130, 292-308.	2. 5	24
9	Sex differences in the temporal development of pronociceptive immune responses in the tibia fracture mouse model. Pain, 2019, 160, 2013-2027.	4.2	20
10	The Rodent Tibia Fracture Model: A Critical Review and Comparison With the Complex Regional Pain Syndrome Literature. Journal of Pain, 2018, 19, 1102.e1-1102.e19.	1.4	36
11	Oxidative Stress Contributes to Fracture/Cast-Induced Inflammation and Pain in a Rat Model of Complex Regional Pain Syndrome. Journal of Pain, 2018, 19, 1147-1156.	1.4	24
12	Exercise Reverses Nociceptive Sensitization, Upregulated Neuropeptide Signaling, Inflammatory Changes, Anxiety, and Memory Impairment in a Mouse Tibia Fracture Model. Anesthesiology, 2018, 129, 557-575.	2.5	28
13	Neuropeptide regulation of adaptive immunity in the tibia fracture model of complex regional pain syndrome. Journal of Neuroinflammation, 2018, 15, 105.	7.2	31
14	Autoinflammatory and autoimmune contributions to complex regional pain syndrome. Molecular Pain, 2018, 14, 174480691879912.	2.1	64
15	Passive transfer autoimmunity in a mouse model of complex regional pain syndrome. Pain, 2017, 158, 2410-2421.	4.2	32
16	Identification of KRT16 as a target of an autoantibody response in complex regional pain syndrome. Experimental Neurology, 2017, 287, 14-20.	4.1	27
17	Bisphosphonates Inhibit Pain, Bone Loss, and Inflammation in a Rat Tibia Fracture Model of Complex Regional Pain Syndrome. Anesthesia and Analgesia, 2016, 123, 1033-1045.	2.2	42
18	Acute versus chronic phase mechanisms in a rat model of CRPS. Journal of Neuroinflammation, 2016, 13, 14.	7.2	58

#	Article	IF	CITATIONS
19	Facilitated spinal neuropeptide signaling and upregulated inflammatory mediator expression contribute to postfracture nociceptive sensitization. Pain, 2015, 156, 1852-1863.	4.2	33
20	Differential Efficacy of Ketamine in the Acute <i>versus</i> Chronic Stages of Complex Regional Pain Syndrome in Mice. Anesthesiology, 2015, 123, 1435-1447.	2.5	35
21	Sex differences in a Murine Model of Complex Regional Pain Syndrome. Neurobiology of Learning and Memory, 2015, 123, 100-109.	1.9	53
22	Autoimmunity contributes to nociceptive sensitization in a mouse model of complex regional pain syndrome. Pain, 2014, 155, 2377-2389.	4.2	75
23	Immobilization Contributes to Exaggerated Neuropeptide Signaling, Inflammatory Changes, and Nociceptive Sensitization After Fracture in Rats. Journal of Pain, 2014, 15, 1033-1045.	1.4	57
24	Activation of Cutaneous Immune Responses in Complex Regional Pain Syndrome. Journal of Pain, 2014, 15, 485-495.	1.4	111
25	Brain Neuroplastic Changes Accompany Anxiety and Memory Deficits in a Model of Complex Regional Pain Syndrome. Anesthesiology, 2014, 121, 852-865.	2.5	70
26	Keratinocytes express cytokines and nerve growth factor in response to neuropeptide activation of the ERK1/2 and JNK MAPK transcription pathways. Regulatory Peptides, 2013, 186, 92-103.	1.9	79
27	Acute and Chronic Phases of Complex Regional Pain Syndrome in Mice are Accompanied by Distinct Transcriptional Changes in the Spinal Cord. Molecular Pain, 2013, 9, 1744-8069-9-40.	2.1	32
28	Changes Resembling Complex Regional Pain Syndrome Following Surgery and Immobilization. Journal of Pain, 2013, 14, 516-524.	1.4	54
29	Epidermal adrenergic signaling contributes to inflammation and pain sensitization in a rat model of complex regional pain syndrome. Pain, 2013, 154, 1224-1236.	4.2	62
30	Preprotachykinin-A Gene Disruption Attenuates Nociceptive Sensitivity After Opioid Administration and Incision by Peripheral and Spinal Mechanisms in Mice. Journal of Pain, 2012, 13, 997-1007.	1.4	17
31	Keratinocyte expression of inflammatory mediators plays a crucial role in substance P-induced acute and chronic pain. Journal of Neuroinflammation, 2012, 9, 181.	7.2	55
32	Neuropeptide Deficient Mice Have Attenuated Nociceptive, Vascular, and Inflammatory Changes in a Tibia Fracture Model of Complex Regional Pain Syndrome. Molecular Pain, 2012, 8, 1744-8069-8-85.	2.1	61
33	Substance P Signaling Controls Mast Cell Activation, Degranulation, and Nociceptive Sensitization in a Rat Fracture Model of Complex Regional Pain Syndrome. Anesthesiology, 2012, 116, 882-895.	2.5	109
34	Clinical features and pathophysiology of complex regional pain syndrome. Lancet Neurology, The, 2011, 10, 637-648.	10.2	553
35	Neuropeptides Contribute to Peripheral Nociceptive Sensitization by Regulating Interleukin- $\hat{l^2}$ Production in Keratinocytes. Anesthesia and Analgesia, 2011, 113, 175-183.	2.2	61
36	Fracture induces keratinocyte activation, proliferation, and expression of pro-nociceptive inflammatory mediators. Pain, 2010, 151, 843-852.	4.2	63

#	Article	IF	Citations
37	Role of Neuropeptide, Cytokine, and Growth Factor Signaling in Complex Regional Pain Syndrome. Pain Medicine, 2010, 11, 1239-1250.	1.9	44
38	Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-κB activation, osteoclastogenesis and bone resorption. Bone, 2010, 46, 1369-1379.	2.9	157
39	The NALP1 inflammasome controls cytokine production and nociception in a rat fracture model of complex regional pain syndrome. Pain, 2009, 147, 277-286.	4.2	65
40	Pentoxifylline attenuates nociceptive sensitization and cytokine expression in a tibia fracture rat model of complex regional pain syndrome. European Journal of Pain, 2009, 13, 253-262.	2.8	58
41	Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro. Bone, 2009, 45, 309-320.	2.9	136
42	Post-junctional facilitation of Substance P signaling in a tibia fracture rat model of complex regional pain syndrome type I. Pain, 2009, 144, 278-286.	4.2	79
43	The role of enhanced cutaneous IL- $\hat{\Pi}^2$ signaling in a rat tibia fracture model of complex regional pain syndrome. Pain, 2009, 144, 303-313.	4.2	86
44	Role of substance P signaling in enhanced nociceptive sensitization and local cytokine production after incision. Pain, 2009, 145, 341-349.	4.2	97
45	TNF signaling contributes to the development of nociceptive sensitization in a tibia fracture model of complex regional pain syndrome type I. Pain, 2008, 137, 507-519.	4.2	82
46	Effect of anti-NGF antibodies in a rat tibia fracture model of complex regional pain syndrome type I. Pain, 2008, 138, 47-60.	4.2	106
47	Bone microstructure and its associated genetic variability in 12 inbred mouse strains: \hat{l} 4CT study and in silico genome scan. Bone, 2008, 42, 439-451.	2.9	35
48	Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone, 2008, 42, 172-179.	2.9	298
49	Glucocorticoid inhibition of vascular abnormalities in a tibia fracture rat model of complex regional pain syndrome type I. Pain, 2006, 121, 158-167.	4.2	53
50	Chronic pain and genetic background interact and influence opioid analgesia, tolerance, and physical dependence. Pain, 2006, 121, 232-240.	4.2	68
51	Sensitivity, specificity, and variability of nerve conduction velocity measurements in carpal tunnel syndrome. Archives of Physical Medicine and Rehabilitation, 2005, 86, 12-16.	0.9	61
52	Capsaicin-Sensitive Sensory Neurons Contribute to the Maintenance of Trabecular Bone Integrity. Journal of Bone and Mineral Research, 2004, 20, 257-267.	2.8	140
53	Substance P signaling contributes to the vascular and nociceptive abnormalities observed in a tibial fracture rat model of complex regional pain syndrome type I. Pain, 2004, 108, 95-107.	4.2	178
54	A substance P receptor (NK1) antagonist enhances the widespread osteoporotic effects of sciatic nerve section. Bone, 2003, 33, 927-936.	2.9	65

#	Article	IF	Citations
55	A substance P receptor (NK1) antagonist can reverse vascular and nociceptive abnormalities in a rat model of complex regional pain syndrome type II. Pain, 2003, 104, 75-84.	4.2	78
56	High intensity magnetic stimulation over the lumbosacral spine evokes antinociception in rats. Clinical Neurophysiology, 2002, 113, 1006-1012.	1.5	16
57	Capsaicin sensitive afferents mediate the development of heat hyperalgesia and hindpaw edema after sciatic section in rats. Neuroscience Letters, 2002, 318, 39-43.	2.1	14
58	Glucocorticoid inhibition of neuropathic limb edema and cutaneous neurogenic extravasation. Brain Research, 2001, 913, 140-148.	2.2	34
59	Glucocorticoid Inhibition of Neuropathic Hyperalgesia and Spinal Fos Expression. Anesthesia and Analgesia, 2001, 92, 476-482.	2.2	46
60	Antinociceptive Action of Nitrous Oxide Is Mediated by Stimulation of Noradrenergic Neurons in the Brainstem and Activation of \hat{l}_{\pm} sub>2BAdrenoceptors. Journal of Neuroscience, 2000, 20, 9242-9251.	3.6	130
61	The α2A adrenoceptor and the sympathetic postganglionic neuron contribute to the development of neuropathic heat hyperalgesia in mice. Pain, 2000, 85, 345-358.	4.2	71
62	Reply to Bonicalzi and Canavero. Pain, 1999, 79, 318-319.	4.2	1
63	Methylprednisolone prevents the development of autotomy and neuropathic edema in rats, but has no effect on nociceptive thresholds. Pain, 1999, 80, 555-566.	4.2	65
64	Conduction velocity is inversely related to axonal length in the median sensory nerve., 1998, 21, 262-263.		0
65	The Analgesic Potency of Dexmedetomidine Is Enhanced After Nerve Injury. Anesthesia and Analgesia, 1998, 87, 941-948.	2.2	122
66	THORACODORSAL NERVE CONDUCTION STUDY1. American Journal of Physical Medicine and Rehabilitation, 1998, 77, 296-298.	1.4	5
67	A critical review of controlled clinical trials for peripheral neuropathic pain and complex regional pain syndromes. Pain, 1997, 73, 123-139.	4.2	590
68	An electrophysiological demonstration of polysegmental innervation in the lumbar medial paraspinal muscles. Muscle and Nerve, 1997, 20, 113-115.	2.2	13
69	An unusual presentation of a traumatic ulnar mononeuropathy with a Martin-Gruber anastomosis., 1996, 19, 920-922.		6
70	ELECTROMYOGRAPHIC MOTOR TINEL??S SIGN IN ULNAR MONONEUROPATHIES AT THE ELBOW. American Journal of Physical Medicine and Rehabilitation, 1995, 74, 419-426.	1.4	13
71	The resolution of neuropathic hyperalgesia following motor and sensory functional recovery in sciatic axonotmetic mononeuropathies. Pain, 1994, 58, 157-168.	4.2	50
72	The Natural Resolution of a Lumbar Spontaneous Epidural Hematoma and Associated Radiculopathy. Spine, 1994, 19, 67-69.	2.0	36

#	Article	IF	CITATIONS
73	A loose ligature-induced mononeuropathy produces hyperalgesias mediated by both the injured sciatic nerve and the adjacent saphenous nerve. Pain, 1993, 55, 297-304.	4.2	43
74	THE ABSENCE OF BRACHIAL PLEXUS INJURY IN STROKE. American Journal of Physical Medicine and Rehabilitation, 1993, 72, 127-135.	1.4	15
75	Adjacent neuropathic hyperalgesia in rats: A model for sympathetic independent pain. Neuroscience Letters, 1991, 133, 241-244.	2.1	37
76	THE EFFECT OF ICE ON INTRA-ARTICULAR TEMPERATURE IN THE KNEE OF THE DOG. American Journal of Physical Medicine and Rehabilitation, 1991, 70, 181-185.	1.4	43
77	The development of chronic mechanical hyperalgesia, autotomy and collateral sprouting following sciatic nerve section in rat. Pain, 1989, 38, 321-332.	4.2	94