
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6100240/publications.pdf Version: 2024-02-01

LIN-SONG RIAN

#	Article	IF	CITATIONS
1	Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biology, 2018, 17, 297-314.	9.0	324
2	Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models. Aging Cell, 2010, 9, 135-146.	6.7	311
3	Role of Endothelial Dysfunction in Cardiovascular Diseases: The Link Between Inflammation and Hydrogen Sulfide. Frontiers in Pharmacology, 2019, 10, 1568.	3.5	300
4	A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer?. Antioxidants and Redox Signaling, 2019, 31, 1-38.	5.4	293
5	Hydrogen sulfide attenuates lipopolysaccharideâ€induced inflammation by inhibition of p38 mitogenâ€activated protein kinase in microglia. Journal of Neurochemistry, 2007, 100, 1121-1128.	3.9	278
6	Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2960-E2969.	7.1	261
7	Role of Hydrogen Sulfide in the Cardioprotection Caused by Ischemic Preconditioning in the Rat Heart and Cardiac Myocytes. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 670-678.	2.5	244
8	Hydrogen sulfide: Neurochemistry and neurobiology. Neurochemistry International, 2008, 52, 155-165.	3.8	230
9	Hydrogen Sulfide in the Mammalian Cardiovascular System. Antioxidants and Redox Signaling, 2012, 17, 141-185.	5.4	225
10	Hydrogen Sulfide Inhibits Rotenone-Induced Apoptosis via Preservation of Mitochondrial Function. Molecular Pharmacology, 2009, 75, 27-34.	2.3	215
11	Hydrogen sulfide: A novel signaling molecule in the central nervous system. Neurochemistry International, 2010, 56, 3-10.	3.8	208
12	Hydrogen Sulfide: Neurophysiology and Neuropathology. Antioxidants and Redox Signaling, 2011, 15, 405-419.	5.4	182
13	Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2006, 40, 119-130.	1.9	178
14	Hydrogen Sulfide and Cellular Redox Homeostasis. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12.	4.0	172
15	Hydrogen sulfide protects astrocytes against H2O2-induced neural injury via enhancing glutamate uptake. Free Radical Biology and Medicine, 2008, 45, 1705-1713.	2.9	170
16	Hydrogen Sulfide: A Neuromodulator and Neuroprotectant in the Central Nervous System. ACS Chemical Neuroscience, 2014, 5, 876-883.	3.5	169
17	Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways. Pflugers Archiv European Journal of Physiology, 2007, 455, 607-616.	2.8	161
18	Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage—implications for the treatment of osteoporosis. Free Radical Biology and Medicine, 2011, 50, 1314-1323.	2.9	157

#	Article	IF	CITATIONS
19	Hydrogen Sulfide Inhibits Plasma Renin Activity. Journal of the American Society of Nephrology: JASN, 2010, 21, 993-1002.	6.1	151
20	Formononetin-induced oxidative stress abrogates the activation of STAT3/5 signaling axis and suppresses the tumor growth in multiple myeloma preclinical model. Cancer Letters, 2018, 431, 123-141.	7.2	148
21	Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia, 2006, 54, 116-124.	4.9	138
22	HERG K ⁺ Channel Activity Is Regulated by Changes in Phosphatidyl Inositol 4,5-Bisphosphate. Circulation Research, 2001, 89, 1168-1176.	4.5	129
23	Human Multidrug Resistance Associated Protein 4 Confers Resistance to Camptothecins. Pharmaceutical Research, 2005, 22, 1837-1853.	3.5	127
24	Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-16.	4.0	121
25	Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia. British Journal of Pharmacology, 2010, 161, 668-679.	5.4	118
26	Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovascular Research, 2010, 88, 482-491.	3.8	118
27	Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1330-H1340.	3.2	112
28	Hydrogen sulfide gas has cell growth regulatory role. European Journal of Pharmacology, 2011, 656, 5-9.	3.5	109
29	Sulfhydration of p66Shc at Cysteine59 Mediates the Antioxidant Effect of Hydrogen Sulfide. Antioxidants and Redox Signaling, 2014, 21, 2531-2542.	5.4	109
30	H ₂ S preconditioning-induced PKC activation regulates intracellular calcium handling in rat cardiomyocytes. American Journal of Physiology - Cell Physiology, 2008, 294, C169-C177.	4.6	106
31	Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein90 pathway. Neuroscience, 2010, 167, 277-286.	2.3	105
32	Hydrogen sulphide regulates intracellular pH in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2007, 358, 1142-1147.	2.1	100
33	Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-1°B and STAT3. Redox Biology, 2021, 38, 101813.	9.0	99
34	Potential role of genipin in cancer therapy. Pharmacological Research, 2018, 133, 195-200.	7.1	98
35	Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2008, 295, C1261-C1270.	4.6	96
36	Protective effect of hydrogen sulphide against 6â€OHDAâ€induced cell injury in SH‣Y5Y cells involves PKC/PI3K/Akt pathway. British Journal of Pharmacology, 2010, 161, 467-480.	5.4	94

#	Article	IF	CITATIONS
37	Regulation of Heart Function by Endogenous Gaseous Mediators—Crosstalk Between Nitric Oxide and Hydrogen Sulfide. Antioxidants and Redox Signaling, 2011, 14, 2081-2091.	5.4	92
38	The Role of Hydrogen Sulfide in Renal System. Frontiers in Pharmacology, 2016, 7, 385.	3.5	90
39	Hydrogen sulphide in the hypothalamus causes an ATP-sensitive K+ channel-dependent decrease in blood pressure in freely moving rats. Neuroscience, 2008, 152, 169-177.	2.3	87
40	A Mechanistic Study of the Intestinal Absorption of Cryptotanshinone, the Major Active Constituent of Salvia miltiorrhiza. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 1285-1294.	2.5	86
41	Negative regulation of β-adrenergic function by hydrogen sulphide in the rat hearts. Journal of Molecular and Cellular Cardiology, 2008, 44, 701-710.	1.9	81
42	Effect of hydrogen sulfide on intracellular calcium homeostasis in neuronal cells. Neurochemistry International, 2010, 56, 508-515.	3.8	81
43	The Neuroprotection of Hydrogen Sulfide Against MPTP-Induced Dopaminergic Neuron Degeneration Involves Uncoupling Protein 2 Rather Than ATP-Sensitive Potassium Channels. Antioxidants and Redox Signaling, 2012, 17, 849-859.	5.4	81
44	CaT1 Contributes to the Stores-operated Calcium Current in Jurkat T-lymphocytes. Journal of Biological Chemistry, 2002, 277, 47175-47183.	3.4	77
45	Topotecan Is a Substrate for Multidrug Resistance Associated Protein 4. Current Drug Metabolism, 2006, 7, 105-118.	1.2	75
46	An LQT mutant minK alters KvLQT1 trafficking. American Journal of Physiology - Cell Physiology, 2004, 286, C1453-C1463.	4.6	70
47	Hydrogen Sulfide: Recent Progression and Perspectives for the Treatment of Diabetic Nephropathy. Molecules, 2019, 24, 2857.	3.8	68
48	Molecular analysis of PIP2 regulation of HERG and IKr. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2154-H2163.	3.2	66
49	Hydrogen sulfide protects SH-SY5Y neuronal cells against d-galactose induced cell injury by suppression of advanced glycation end products formation and oxidative stress. Neurochemistry International, 2013, 62, 603-609.	3.8	63
50	Brain, Learning, and Memory: Role of H2S in Neurodegenerative Diseases. Handbook of Experimental Pharmacology, 2015, 230, 193-215.	1.8	61
51	Zein Increases the Cytoaffinity and Biodegradability of Scaffolds 3D-Printed with Zein and Poly(ε-caprolactone) Composite Ink. ACS Applied Materials & Interfaces, 2018, 10, 18551-18559.	8.0	60
52	Hydrogen Sulfide Protects Amyloid-Î ² Induced Cell Toxicity in Microglia. Journal of Alzheimer's Disease, 2011, 22, 1189-1200.	2.6	58
53	A New Hope for a Devastating Disease: Hydrogen Sulfide in Parkinson's Disease. Molecular Neurobiology, 2018, 55, 3789-3799.	4.0	58
54	Therapeutic Effect of Hydrogen Sulfide-Releasing L-Dopa Derivative ACS84 on 6-OHDA-Induced Parkinson's Disease Rat Model. PLoS ONE, 2013, 8, e60200.	2.5	56

#	Article	IF	CITATIONS
55	Renal protective effect of polysulfide in cisplatin-induced nephrotoxicity. Redox Biology, 2018, 15, 513-521.	9.0	56
56	Cardioprotective effects of epigallocatechin-3-gallate against doxorubicin-induced cardiomyocyte injury. European Journal of Pharmacology, 2011, 652, 82-88.	3.5	55
57	Hydrogen Sulfide Prevents Heart Failure Development <i>via</i> Inhibition of Renin Release from Mast Cells in Isoproterenol-Treated Rats. Antioxidants and Redox Signaling, 2014, 20, 759-769.	5.4	55
58	Hydrogen Sulfide. Journal of Cardiovascular Pharmacology, 2011, 58, 560-569.	1.9	53
59	Hydrogen sulfide protects SH-SY5Y cells against 6-hydroxydopamine-induced endoplasmic reticulum stress. American Journal of Physiology - Cell Physiology, 2012, 303, C81-C91.	4.6	53
60	Antiâ€allergic action of antiâ€malarial drug artesunate in experimental mast cellâ€mediated anaphylactic models. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 195-203.	5.7	53
61	Implications of hydrogen sulfide in liver pathophysiology: Mechanistic insights and therapeutic potential. Journal of Advanced Research, 2021, 27, 127-135.	9.5	53
62	Cyclooxygenase-2 mediates the delayed cardioprotection induced by hydrogen sulfide preconditioning in isolated rat cardiomyocytes. Pflugers Archiv European Journal of Physiology, 2008, 455, 971-978.	2.8	52
63	Activation of autophagic flux and the Nrf2/ARE signaling pathway by hydrogen sulfide protects against acrylonitrile-induced neurotoxicity in primary rat astrocytes. Archives of Toxicology, 2018, 92, 2093-2108.	4.2	51
64	Anti-Inflammation Activity of Flavones and Their Structure–Activity Relationship. Journal of Agricultural and Food Chemistry, 2021, 69, 7285-7302.	5.2	50
65	Depression promotes prostate cancer invasion and metastasis via a sympathetic-cAMP-FAK signaling pathway. Oncogene, 2018, 37, 2953-2966.	5.9	49
66	Impaired CBS-H2S signaling axis contributes to MPTP-induced neurodegeneration in a mouse model of Parkinson's disease. Brain, Behavior, and Immunity, 2018, 67, 77-90.	4.1	45
67	Hydrogen sulfide regulates intracellular pH in rat primary cultured glia cells. Neuroscience Research, 2010, 66, 92-98.	1.9	44
68	Combretastatin A-1 phosphate, a microtubule inhibitor, acts on both hepatocellular carcinoma cells and tumor-associated macrophages by inhibiting the Wnt/β-catenin pathway. Cancer Letters, 2016, 380, 134-143.	7.2	41
69	Hydrogen Sulfide Inhibits A2A Adenosine Receptor Agonist Induced β-Amyloid Production in SH-SY5Y Neuroblastoma Cells via a cAMP Dependent Pathway. PLoS ONE, 2014, 9, e88508.	2.5	40
70	Phosphatidylinositol 4,5-bisphosphate interactions with the HERG K+ channel. Pflugers Archiv European Journal of Physiology, 2007, 455, 105-113.	2.8	39
71	Hydrogen sulfide inhibits ATP-induced neuroinflammation and Aβ1–42 synthesis by suppressing the activation of STAT3 and cathepsin S. Brain, Behavior, and Immunity, 2018, 73, 603-614.	4.1	39
72	H(2)S-Releasing Aspirin Protects against Aspirin-Induced Gastric Injury via Reducing Oxidative Stress. PLoS ONE, 2012, 7, e46301.	2.5	39

#	Article	IF	CITATIONS
73	All in the timing: A comparison between the cardioprotection induced by H2S preconditioning and post-infarction treatment. European Journal of Pharmacology, 2009, 616, 160-165.	3.5	38
74	Hydrogen Sulfide Prevents Elastin Loss and Attenuates Calcification Induced by High Glucose in Smooth Muscle Cells through Suppression of Stat3/Cathepsin S Signaling Pathway. International Journal of Molecular Sciences, 2019, 20, 4202.	4.1	38
75	Progesterone Impairs Human Ether-a-go-go-related Gene (HERG) Trafficking by Disruption of Intracellular Cholesterol Homeostasis. Journal of Biological Chemistry, 2011, 286, 22186-22194.	3.4	36
76	Hydrogen sulfide regulates cAMP homeostasis and renin degranulation in As4.1 and rat renin-rich kidney cells. American Journal of Physiology - Cell Physiology, 2012, 302, C59-C66.	4.6	36
77	The New Synthetic H2S-Releasing SDSS Protects MC3T3-E1 Osteoblasts against H2O2-Induced Apoptosis by Suppressing Oxidative Stress, Inhibiting MAPKs, and Activating the PI3K/Akt Pathway. Frontiers in Pharmacology, 2017, 08, 07.	3.5	36
78	Cardioprotection induced by Na+/K+-ATPase activation involves extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase/Akt pathway. Cardiovascular Research, 2011, 89, 51-59.	3.8	35
79	CCL5 deficiency rescues pulmonary vascular dysfunction, and reverses pulmonary hypertension via caveolin-1-dependent BMPR2 activation. Journal of Molecular and Cellular Cardiology, 2018, 116, 41-56.	1.9	35
80	Bicarbonate-dependent effect of hydrogen sulfide on vascular contractility in rat aortic rings. American Journal of Physiology - Cell Physiology, 2010, 299, C866-C872.	4.6	34
81	HNO suppresses LPS-induced inflammation in BV-2 microglial cells via inhibition of NF-κB and p38 MAPK pathways. Pharmacological Research, 2016, 111, 885-895.	7.1	34
82	Yin Yang 1 Suppresses Dilated Cardiomyopathy and Cardiac Fibrosis Through Regulation of <i>Bmp7</i> and <i>Ctgf</i> . Circulation Research, 2019, 125, 834-846.	4.5	34
83	Periostin. Circulation Research, 2020, 127, 1138-1152.	4.5	34
84	PKA phosphorylation of HERG protein regulates the rate of channel synthesis. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1244-H1254.	3.2	34
85	Effects of κ-opioid receptor stimulation in the heart and the involvement of protein kinase C. British Journal of Pharmacology, 1998, 124, 600-606.	5.4	33
86	A Mechanistic Study on Reduced Toxicity of Irinotecan by Coadministered Thalidomide, a Tumor Necrosis Factor-α Inhibitor. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 82-104.	2.5	33
87	Hydrogen sulfide reduces RAGE toxicity through inhibition of its dimer formation. Free Radical Biology and Medicine, 2017, 104, 262-271.	2.9	33
88	κ -Opioid Receptor Stimulation Induces Arrhythmia in the Isolated Rat Heart via the Protein Kinase C/Na+–H+Exchange Pathway. Journal of Molecular and Cellular Cardiology, 2000, 32, 1415-1427.	1.9	32
89	Hydrogen Sulfide Attenuates Opioid Dependence by Suppression of Adenylate Cyclase/cAMP Pathway. Antioxidants and Redox Signaling, 2014, 20, 31-41.	5.4	32
90	Renal Protective Effect of Hydrogen Sulfide in Cisplatin-Induced Nephrotoxicity. Antioxidants and Redox Signaling, 2018, 29, 455-470.	5.4	31

#	Article	IF	CITATIONS
91	The role of hydrogen sulfide in cyclic nucleotide signaling. Biochemical Pharmacology, 2018, 149, 20-28.	4.4	31
92	Phospholipase C Inhibitors Attenuate Arrhythmias Induced byl̂º-receptor Stimulation in the Isolated Rat Heart. Journal of Molecular and Cellular Cardiology, 1998, 30, 2103-2110.	1.9	29
93	Exclusion of alternative exon 33 of Ca _V 1.2 calcium channels in heart is proarrhythmogenic. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4288-E4295.	7.1	28
94	Role of Hydrogen Sulfide and Polysulfides in Neurological Diseases: Focus on Protein S-Persulfidation. Current Neuropharmacology, 2021, 19, 868-884.	2.9	28
95	DR-region of Na+/K+ ATPase is a target to treat excitotoxicity and stroke. Cell Death and Disease, 2019, 10, 6.	6.3	27
96	Therapeutic potential of sulfur-containing natural products in inflammatory diseases. , 2020, 216, 107687.		27
97	Protective Smell of Hydrogen Sulfide and Polysulfide in Cisplatin-Induced Nephrotoxicity. International Journal of Molecular Sciences, 2019, 20, 313.	4.1	26
98	Induction of caveolin-3/eNOS complex by nitroxyl (HNO) ameliorates diabetic cardiomyopathy. Redox Biology, 2020, 32, 101493.	9.0	25
99	Stimulation of N-Terminal Truncated Isoform of Androgen Receptor Stabilizes Human Ether-al•go-go-Related Gene-Encoded Potassium Channel Protein via Activation of Extracellular Signal Regulated Kinase 1/2. Endocrinology, 2008, 149, 5061-5069.	2.8	24
100	Hydrogen Sulfide Regulates Na ⁺ /H ⁺ Exchanger Activity via Stimulation of Phosphoinositide 3-Kinase/Akt and Protein Kinase G Pathways. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 726-735.	2.5	24
101	Neuroprotective Effects of Hydrogen Sulfide in Parkinson's Disease Animal Models. Methods in Enzymology, 2015, 554, 169-186.	1.0	24
102	Hydrogen sulfide protects testicular germ cells against heat-induced injury. Nitric Oxide - Biology and Chemistry, 2015, 46, 165-171.	2.7	24
103	ACS84, a novel hydrogen sulfide-releasing compound, protects against amyloid β-induced cell cytotoxicity. Neurochemistry International, 2011, 58, 591-598.	3.8	23
104	Hydrogen Sulfide: Biogenesis, Physiology, and Pathology. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-2.	4.0	23
105	A near infrared singlet oxygen probe and its applications in in vivo imaging and measurement of singlet oxygen quenching activity of flavonoids. Sensors and Actuators B: Chemical, 2018, 266, 645-654.	7.8	23
106	Post-Transcriptional Control of Human Ether-a-go-go-Related Gene Potassium Channel Protein by α-Adrenergic Receptor Stimulation. Molecular Pharmacology, 2010, 78, 186-197.	2.3	20
107	H2S releasing aspirin protects amyloid beta induced cell toxicity in BV-2 microglial cells. Neuroscience, 2011, 193, 80-88.	2.3	20
108	Inhibition of endogenous hydrogen sulfide biosynthesis enhances the anti-cancer effect of 3,3′-diindolylmethane in human gastric cancer cells. Life Sciences, 2020, 261, 118348.	4.3	19

#	Article	IF	CITATIONS
109	Anti–Na ⁺ /K ⁺ -ATPase immunotherapy ameliorates α-synuclein pathology through activation of Na ⁺ /K ⁺ -ATPase α1–dependent autophagy. Science Advances, 2021, 7, .	10.3	19
110	Stimulation of Na ⁺ /K ⁺ -ATPase with an Antibody against Its 4 th Extracellular Region Attenuates Angiotensin II-Induced H9c2 Cardiomyocyte Hypertrophy via an AMPK/SIRT3/PPAR <i>γ</i> Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	4.0	18
111	Polysulfide and Hydrogen Sulfide Ameliorate Cisplatin-Induced Nephrotoxicity and Renal Inflammation through Persulfidating STAT3 and IKKβ. International Journal of Molecular Sciences, 2020, 21, 7805.	4.1	18
112	Role of nitroxyl (HNO) in cardiovascular system: From biochemistry to pharmacology. Pharmacological Research, 2020, 159, 104961.	7.1	18
113	An Updated Insight Into Molecular Mechanism of Hydrogen Sulfide in Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury Under Diabetes. Frontiers in Pharmacology, 2021, 12, 651884.	3.5	18
114	APOBEC3B and IL-6 form a positive feedback loop in hepatocellular carcinoma cells. Science China Life Sciences, 2017, 60, 617-626.	4.9	16
115	Hydrogen sulfide inhibits opioid withdrawal-induced pain sensitization in rats by down-regulation of spinal calcitonin gene-related peptide expression in the spine. International Journal of Neuropsychopharmacology, 2014, 17, 1387-1395.	2.1	15
116	Combination of sorafenib and enzalutamide as a potential new approach for the treatment of castration-resistant prostate cancer. Cancer Letters, 2017, 385, 108-116.	7.2	15
117	Nitroxyl as a Potential Theranostic in the Cancer Arena. Antioxidants and Redox Signaling, 2020, 32, 331-349.	5.4	15
118	Cyclic polysulphide 1,2,4-trithiolane from stinky bean (Parkia speciosa seeds) is a slow releasing hydrogen sulphide (H2S) donor. Journal of Functional Foods, 2017, 35, 197-204.	3.4	14
119	DR region of Na+-K+-ATPase is a new target to protect heart against oxidative injury. Scientific Reports, 2018, 8, 13100.	3.3	14
120	H2S Donor and Bone Metabolism. Frontiers in Pharmacology, 2021, 12, 661601.	3.5	14
121	PRO- AND ANTI-ARRHYTHMIC EFFECTS OF A kappa OPIOID RECEPTOR AGONIST: A MODEL FOR THE BIPHASIC ACTION OF A LOCAL HORMONE IN THE HEART. Clinical and Experimental Pharmacology and Physiology, 1999, 26, 842-844.	1.9	13
122	Na+/K+-ATPase-dependent autophagy protects brain against ischemic injury. Signal Transduction and Targeted Therapy, 2020, 5, 55.	17.1	13
123	Loss of a Negative Feedback Loop between IRF8 and AR Promotes Prostate Cancer Growth and Enzalutamide Resistance. Cancer Research, 2020, 80, 2927-2939.	0.9	13
124	Role of protein kinase C in caerulein induced expression of substance P and neurokininâ€1â€receptors in murine pancreatic acinar cells. Journal of Cellular and Molecular Medicine, 2011, 15, 2139-2149.	3.6	12
125	Impaired [Ca ²⁺] _i and pH _i responses to κ-opioid receptor stimulation in the heart of chronically hypoxic rats. American Journal of Physiology - Cell Physiology, 2000, 279, C1483-C1494.	4.6	11
126	Hydrogen sulfide and renal ischemia. Expert Review of Clinical Pharmacology, 2011, 4, 49-61.	3.1	11

#	Article	IF	CITATIONS
127	Effects of U50488 and Bremazocine on [Ca2+]iand cAMP in Naive and Tolerant Rat Ventricular Myocytes: Evidence of Kappa Opioid Receptor Multiplicity in the Heart. Journal of Molecular and Cellular Cardiology, 1999, 31, 355-362.	1.9	10
128	Pharmacokinetic Mechanisms for Reduced Toxicity of Irinotecan by Coadministered Thalidomide. Current Drug Metabolism, 2006, 7, 431-454.	1.2	10
129	Highly recurrent CBS epimutations in gastric cancer CpG island methylator phenotypes and inflammation. Genome Biology, 2021, 22, 167.	8.8	10
130	Role of Na+/K+-ATPase in ischemic stroke: in-depth perspectives from physiology to pharmacology. Journal of Molecular Medicine, 2022, 100, 395-410.	3.9	9
131	Role of protein kinase C-epsilon in the development of κ-opioid receptor tolerance to U50,488H in rat ventricular myocytes. British Journal of Pharmacology, 2002, 135, 1675-1684.	5.4	8
132	Air Oxidation of HS–Catalyzed by An Mixed-Valence Diruthenium Complex, an Near-IR Probe for HS–Detection. Inorganic Chemistry, 2011, 50, 7379-7381.	4.0	8
133	DR-region of Na ⁺ /K ⁺ -ATPase is a target to ameliorate hepatic insulin resistance in obese diabetic mice. Theranostics, 2020, 10, 6149-6166.	10.0	8
134	Acute acrylonitrile exposure inhibits endogenous H2S biosynthesis in rat brain and liver: The role of CBS/3-MPST-H2S pathway in its astrocytic toxicity. Toxicology, 2021, 451, 152685.	4.2	8
135	Acidosis antagonizes intracellular calcium response to κ-opioid receptor stimulation in the rat heart. American Journal of Physiology - Cell Physiology, 1999, 277, C492-C500.	4.6	7
136	Immunization with Na+/K+ ATPase DR peptide prevents bone loss in an ovariectomized rat osteoporosis model. Biochemical Pharmacology, 2018, 156, 281-290.	4.4	7
137	Human Multidrug Resistance Associated Protein 4 Confers Resistance to Camptothecins. Pharmaceutical Research, 2005, 22, 1837.	3.5	6
138	Therapeutic potential of carbon monoxide in hypertension-induced vascular smooth muscle cell damage revisited: From physiology and pharmacology. Biochemical Pharmacology, 2022, 199, 115008.	4.4	5
139	Three-Dimensional RAW264.7 Cell Model on Electrohydrodynamic Printed Poly(ε-Caprolactone) Scaffolds for In Vitro Study of Anti-Inflammatory Compounds. ACS Applied Bio Materials, 2021, 4, 7967-7978.	4.6	4
140	The Role of H2S in the Metabolism of Glucose and Lipids. Advances in Experimental Medicine and Biology, 2021, 1315, 51-66.	1.6	2
141	The Interaction of NO and H2S Signaling Systems in Biology and Medicine. 2-Oxoglutarate-Dependent Oxygenases, 2018, , 145-160.	0.8	2
142	Opioid Dependence and the Adenylyl Cyclase/cAMP Signaling. , 2016, , 449-456.		1
143	Cyclooxygenase-2 mediates the cardioprotection of hydrogen sulfide preconditioning in rat cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2007, 42, S172.	1.9	0
144	Hydrogen sulphide regulates beta-adrenergic function by inhibition of cAMP/PKA pathway in rat cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2008, 44, 777.	1.9	0

#	Article	IF	CITATIONS
145	The unique protection of H2S preconditioning against myocardial infarction: evidence from a comparison study between H2S preconditioning and post-treatment. Journal of Molecular and Cellular Cardiology, 2008, 45, S14-S15.	1.9	Ο
146	Hydrogen Sulfide: Physiological and Pathophysiological Functions. , 2013, , 127-156.		0
147	Therapeutic potential of gasotransmitters for cold stress-related cardiovascular disease. Frigid Zone Medicine, 2022, 2, 10-24.	0.3	0
148	Editorial: Hydrogen sulfide: Physiology, Pharmacology and Toxicology, Volume II. Frontiers in Pharmacology, 0, 13, .	3.5	0