
Cyrus P Zabetian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6099225/publications.pdf Version: 2024-02-01

CVDIIC D 7ARETIAN

#	Article	IF	CITATIONS
1	Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurology, The, 2008, 7, 583-590.	10.2	1,340
2	Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease. Nature Genetics, 2010, 42, 781-785.	21.4	692
3	Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Movement Disorders, 2017, 32, 739-749.	3.9	649
4	DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson's disease. Brain, 2010, 133, 713-726.	7.6	575
5	Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson's disease. Acta Neuropathologica, 2014, 128, 639-650.	7.7	504
6	Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database. PLoS Genetics, 2012, 8, e1002548.	3.5	495
7	Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurology, The, 2017, 16, 55-65.	10.2	394
8	Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Annals of Neurology, 2011, 69, 570-580.	5.3	371
9	APOE ϵ4 Increases Risk for Dementia in Pure Synucleinopathies. JAMA Neurology, 2013, 70, 223.	9.0	302
10	Metaâ€analysis of Parkinson's Disease: Identification of a novel locus, <i>RIT2</i> . Annals of Neurology, 2012, 71, 370-384.	5.3	264
11	A Quantitative-Trait Analysis of Human Plasma–Dopamine β-Hydroxylase Activity: Evidence for a Major Functional Polymorphism at the DBH Locus. American Journal of Human Genetics, 2001, 68, 515-522.	6.2	253
12	Phosphorylated α-Synuclein in Parkinson's Disease. Science Translational Medicine, 2012, 4, 121ra20.	12.4	223
13	Genome-Wide Gene-Environment Study Identifies Glutamate Receptor Gene GRIN2A as a Parkinson's Disease Modifier Gene via Interaction with Coffee. PLoS Genetics, 2011, 7, e1002237.	3.5	206
14	Salivary α-synuclein and DJ-1: potential biomarkers for Parkinson's disease. Brain, 2011, 134, e178-e178.	7.6	196
15	Glucocerebrosidase Gene Mutations. Archives of Neurology, 2008, 65, 379-82.	4.5	188
16	Association of <i>GBA</i> Mutations and the E326K Polymorphism With Motor and Cognitive Progression in Parkinson Disease. JAMA Neurology, 2016, 73, 1217.	9.0	185
17	Significance and confounders of peripheral DJ-1 and alpha-synuclein in Parkinson's disease. Neuroscience Letters, 2010, 480, 78-82.	2.1	184
18	<i>APOE</i> , <i>MAPT</i> , and <i>SNCA</i> Genes and Cognitive Performance in Parkinson Disease. JAMA Neurology, 2014, 71, 1405.	9.0	172

#	Article	IF	CITATIONS
19	CSF Al² ₄₂ and tau in Parkinson's disease with cognitive impairment. Movement Disorders, 2010, 25, 2682-2685.	3.9	162
20	<i>GBA</i> Variants are associated with a distinct pattern of cognitive deficits in <scp>P</scp> arkinson's disease. Movement Disorders, 2016, 31, 95-102.	3.9	158
21	SNCA Variant Associated With Parkinson Disease and Plasma α-Synuclein Level. Archives of Neurology, 2010, 67, 1350-6.	4.5	157
22	CNS tau efflux via exosomes is likely increased in Parkinson's disease but not in Alzheimer's disease. Alzheimer's and Dementia, 2016, 12, 1125-1131.	0.8	154
23	Association of Parkinson Disease with Structural and Regulatory Variants in the HLA Region. American Journal of Human Genetics, 2013, 93, 984-993.	6.2	145
24	Characterizing dysbiosis of gut microbiome in PD: evidence for overabundance of opportunistic pathogens. Npj Parkinson's Disease, 2020, 6, 11.	5.3	140
25	<i>GBA</i> mutations increase risk for Lewy body disease with and without Alzheimer disease pathology. Neurology, 2012, 79, 1944-1950.	1.1	138
26	Stool Immune Profiles Evince Gastrointestinal Inflammation in Parkinson's Disease. Movement Disorders, 2018, 33, 793-804.	3.9	130
27	Association analysis of <i>MAPT</i> H1 haplotype and subhaplotypes in Parkinson's disease. Annals of Neurology, 2007, 62, 137-144.	5.3	129
28	Combined effects of smoking, coffee, and NSAIDs on Parkinson's disease risk. Movement Disorders, 2008, 23, 88-95.	3.9	129
29	New windows into the brain: Central nervous system-derived extracellular vesicles in blood. Progress in Neurobiology, 2019, 175, 96-106.	5.7	121
30	Plasma apolipoprotein A1 as a biomarker for Parkinson disease. Annals of Neurology, 2013, 74, 119-127.	5.3	116
31	Clinical and Biochemical Differences in Patients Having Parkinson Disease With vs Without <i>GBA</i> Mutations. JAMA Neurology, 2013, 70, 852.	9.0	115
32	Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS). Human Molecular Genetics, 2013, 22, 3259-3268.	2.9	113
33	LRRK2 G2019S in Families with Parkinson Disease Who Originated from Europe and the Middle East: Evidence of Two Distinct Founding Events Beginning Two Millennia Ago. American Journal of Human Genetics, 2006, 79, 752-758.	6.2	111
34	Heterozygous <i>parkin</i> point mutations are as common in control subjects as in Parkinson's patients. Annals of Neurology, 2007, 61, 47-54.	5.3	105
35	Glycoproteomics in neurodegenerative diseases. Mass Spectrometry Reviews, 2010, 29, 79-125.	5.4	99
36	Complement 3 and Factor H in Human Cerebrospinal Fluid in Parkinson's Disease, Alzheimer's Disease, and Multiple-System Atrophy. American Journal of Pathology, 2011, 178, 1509-1516.	3.8	97

#	Article	IF	CITATIONS
37	Serotonin and dopamine transporter PET changes in the premotor phase of LRRK2 parkinsonism: cross-sectional studies. Lancet Neurology, The, 2017, 16, 351-359.	10.2	96
38	Sex differences in progression to mild cognitive impairment and dementia in Parkinson's disease. Parkinsonism and Related Disorders, 2018, 50, 29-36.	2.2	94
39	Exploring gene-environment interactions in Parkinson's disease. Human Genetics, 2008, 123, 257-265.	3.8	92
40	Clinical Features of Parkinson Disease Patients With Homozygous Leucine-Rich Repeat Kinase 2 G2019S Mutations. Archives of Neurology, 2006, 63, 1250.	4.5	91
41	Postural instability/gait disturbance in Parkinson's disease has distinct subtypes: an exploratory analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 564-568.	1.9	90
42	Mutations in the dopamine ?-hydroxylase gene are associated with human norepinephrine deficiency. American Journal of Medical Genetics Part A, 2002, 108, 140-147.	2.4	88
43	Parkinson's disease andLRRK2: Frequency of a common mutation in U.S. movement disorder clinics. Movement Disorders, 2006, 21, 519-523.	3.9	84
44	Lack of replication of thirteen single-nucleotide polymorphisms implicated in Parkinson's disease: a large-scale international study. Lancet Neurology, The, 2006, 5, 917-923.	10.2	83
45	The Structure of Linkage Disequilibrium at the DBH Locus Strongly Influences the Magnitude of Association between Diallelic Markers and Plasma Dopamine β-Hydroxylase Activity. American Journal of Human Genetics, 2003, 72, 1389-1400.	6.2	81
46	People with Parkinson's disease and normal MMSE score have a broad range of cognitive performance. Movement Disorders, 2014, 29, 1258-1264.	3.9	76
47	A genotype-controlled analysis of plasma dopamine β-hydroxylase in healthy and alcoholic subjects: evidence for alcohol-related differences in noradrenergic function. Biological Psychiatry, 2002, 52, 1151-1158.	1.3	75
48	Phosphorylated α-synuclein in Parkinson's disease: correlation depends on disease severity. Acta Neuropathologica Communications, 2015, 3, 7.	5.2	74
49	Escaping Parkinson's disease: A neurologically healthy octogenarian with theLRRK2 G2019S mutation. Movement Disorders, 2005, 20, 1077-1078.	3.9	73
50	Sigma receptors are associated with cortical limbic areas in the primate brain. Synapse, 1992, 12, 195-205.	1.2	70
51	Application of Targeted Quantitative Proteomics Analysis in Human Cerebrospinal Fluid Using a Liquid Chromatography Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Tandem Mass Spectrometer (LC MALDI TOF/TOF) Platform. Journal of Proteome Research, 2008, 7, 720-730.	3.7	67
52	Association Between the Ubiquitin Carboxyl-Terminal Esterase L1 Gene (UCHL1) S18Y Variant and Parkinson's Disease: A HuGE Review and Meta-Analysis. American Journal of Epidemiology, 2009, 170, 1344-1357.	3.4	67
53	Cerebrospinal fluid biomarkers and cognitive performance in non-demented patients with Parkinson's disease. Parkinsonism and Related Disorders, 2011, 17, 61-64.	2.2	64
54	Replication of <i>MAPT</i> and <i>SNCA</i> , but not <i>PARK16â€18</i> , as susceptibility genes for Parkinson's disease. Movement Disorders, 2011, 26, 819-823.	3.9	64

#	Article	IF	CITATIONS
55	Pacific Northwest Udall Center of Excellence Clinical Consortium: Study Design and Baseline Cohort Characteristics. Journal of Parkinson's Disease, 2013, 3, 205-214.	2.8	64
56	Diseaseâ€related and genetic correlates of psychotic symptoms in Parkinson's disease. Movement Disorders, 2011, 26, 2190-2195.	3.9	61
57	Genetic association between αâ€ s ynuclein and idiopathic parkinson's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1222-1230.	1.7	60
58	<i>LRRK2</i> mutations and risk variants in Japanese patients with Parkinson's disease. Movement Disorders, 2009, 24, 1034-1041.	3.9	60
59	Evidence for More than One Parkinson's Disease-Associated Variant within the HLA Region. PLoS ONE, 2011, 6, e27109.	2.5	60
60	Genotype-controlled analysis of plasma dopamine β-hydroxylase activity in psychotic unipolar major depression. Biological Psychiatry, 2002, 51, 358-364.	1.3	58
61	The effect of LRRK2 mutations on the cholinergic system in manifest and premanifest stages of Parkinson's disease: a cross-sectional PET study. Lancet Neurology, The, 2018, 17, 309-316.	10.2	57
62	Arguing against the proposed definition changes of PD. Movement Disorders, 2016, 31, 1619-1622.	3.9	55
63	Identification of a novel Parkinson's disease locus via stratified genome-wide association study. BMC Genomics, 2014, 15, 118.	2.8	53
64	Evaluation of mild cognitive impairment subtypes in Parkinson's disease. Movement Disorders, 2014, 29, 756-764.	3.9	53
65	Cerebrospinal Fluid Peptides as Potential Parkinson Disease Biomarkers: A Staged Pipeline for Discovery and Validation*. Molecular and Cellular Proteomics, 2015, 14, 544-555.	3.8	51
66	Effects of Environmental Salinity on Pituitary Growth Hormone Content and Cell Activity in the Euryhaline Tilapia, Oreochromis mossambicus. General and Comparative Endocrinology, 1994, 95, 483-494.	1.8	49
67	Precision Medicine. American Journal of Pathology, 2016, 186, 500-506.	3.8	49
68	Characterizing the Genetic Architecture of Parkinson's Disease in Latinos. Annals of Neurology, 2021, 90, 353-365.	5.3	48
69	LRRK2 mutations in patients with Parkinson's disease from Peru and Uruguay. Parkinsonism and Related Disorders, 2009, 15, 370-373.	2.2	45
70	Identification of genetic modifiers of age-at-onset for familial Parkinson's disease. Human Molecular Genetics, 2016, 25, 3849-3862.	2.9	44
71	Homocysteine and cognitive function in Parkinson's disease. Parkinsonism and Related Disorders, 2017, 44, 1-5.	2.2	44
72	Genotypic and haplotypic associations of the DBH gene with plasma dopamine β-hydroxylase activity in African Americans. European Journal of Human Genetics, 2007, 15, 878-883.	2.8	43

#	Article	IF	CITATIONS
73	A Single Nucleotide Polymorphism at DBH, Possibly Associated with Attention-Deficit/Hyperactivity Disorder, Associates with Lower Plasma Dopamine β-Hydroxylase Activity and is in Linkage Disequilibrium with Two Putative Functional Single Nucleotide Polymorphisms. Biological Psychiatry, 2006, 60, 1034-1038.	1.3	42
74	Detecting Mild Cognitive Deficits in <scp>P</scp> arkinson's <scp>D</scp> isease: <scp>C</scp> omparison of <scp>N</scp> europsychological <scp>T</scp> ests. Movement Disorders, 2018, 33, 1750-1759.	3.9	42
75	Lrrk2 R1441G-related Parkinson's disease: evidence of a common founding event in the seventh century in Northern Spain. Neurogenetics, 2009, 10, 347-353.	1.4	41
76	Cognitive associations with comprehensive gait and static balance measures in Parkinson's disease. Parkinsonism and Related Disorders, 2019, 69, 104-110.	2.2	41
77	Lower plasma apolipoprotein A1 levels are found in Parkinson's disease and associate with apolipoprotein A1 genotype. Movement Disorders, 2015, 30, 805-812.	3.9	37
78	Large-scale exploratory genetic analysis of cognitive impairment in Parkinson's disease. Neurobiology of Aging, 2017, 56, 211.e1-211.e7.	3.1	37
79	DJ-1 and αSYN in LRRK2 CSF do not correlate with striatal dopaminergic function. Neurobiology of Aging, 2012, 33, 836.e5-836.e7.	3.1	34
80	LARGEâ€PD: Examining the genetics of Parkinson's disease in Latin America. Movement Disorders, 2017, 32, 1330-1331.	3.9	34
81	Validity and Utility of a LRRK2 G2019S Mutation Test for the Diagnosis of Parkinson's Disease. Genetic Testing and Molecular Biomarkers, 2006, 10, 221-227.	1.7	32
82	Haplotypeâ€controlled analysis of the association of a nonâ€synonymous single nucleotide polymorphism at DBH (+ 1603C → T) with plasma dopamine βâ€hydroxylase activity. American Journal of Medical Part B: Neuropsychiatric Genetics, 2005, 139B, 88-90.	Gø netics	31
83	Haplotype analysis of Lrrk2 R1441H carriers with parkinsonism. Parkinsonism and Related Disorders, 2009, 15, 466-467.	2.2	31
84	The distribution and risk effect of GBA variants in a large cohort of PD patients from Colombia and Peru. Parkinsonism and Related Disorders, 2019, 63, 204-208.	2.2	31
85	Targeted Discovery and Validation of Plasma Biomarkers of Parkinson's Disease. Journal of Proteome Research, 2014, 13, 4535-4545.	3.7	30
86	Cheek cell–derived α-synuclein and DJ-1 do not differentiate Parkinson's disease from control. Neurobiology of Aging, 2014, 35, 418-420.	3.1	30
87	Genomewide Association Studies of <scp> <i>LRRK2 </i> </scp> Modifiers of Parkinson's Disease. Annals of Neurology, 2021, 90, 76-88.	5.3	30
88	Haptoglobin phenotype modifies serum iron levels and the effect of smoking on Parkinson disease risk. Parkinsonism and Related Disorders, 2015, 21, 1087-1092.	2.2	29
89	Osteology and Interrelationships of the Sand Lances (Teleostei: Ammodytidae). Copeia, 1990, 1990, 78.	1.3	28
90	Variable frequency of LRRK2 variants in the Latin American research consortium on the genetics of Parkinson's disease (LARGE-PD), a case of ancestry. Npj Parkinson's Disease, 2017, 3, 19.	5.3	28

#	Article	IF	CITATIONS
91	Erythrocytic α-synuclein contained in microvesicles regulates astrocytic glutamate homeostasis: a new perspective on Parkinson's disease pathogenesis. Acta Neuropathologica Communications, 2020, 8, 102.	5.2	26
92	Lack of evidence for an association between <i>UCHL1</i> S18Y and Parkinson's disease. European Journal of Neurology, 2008, 15, 134-139.	3.3	25
93	Screening of cognitive impairment in patients with Parkinson's disease: diagnostic validity of the Brazilian versions of the Montreal Cognitive Assessment and the Addenbrooke's Cognitive Examination-Revised. Arquivos De Neuro-Psiquiatria, 2015, 73, 929-933.	0.8	25
94	Multivariate prediction of dementia in Parkinson's disease. Npj Parkinson's Disease, 2020, 6, 20.	5.3	25
95	Neuropsychologic assessment in collaborative Parkinson's disease research: A proposal from the National Institute of Neurological Disorders and Stroke Morris K. Udall Centers of Excellence for Parkinson's Disease Research at the University of Pennsylvania and theÂUniversity of Washington. Alzheimer's and Dementia. 2013. 9. 609-614.	0.8	24
96	Identification of a Japanese family with LRRK2 p.R1441G-related Parkinson's disease. Neurobiology of Aging, 2014, 35, 2656.e17-2656.e23.	3.1	24
97	Ashkenazi Parkinson's disease patients with the LRRK2 G2019S mutation share a common founder dating from the second to fifth centuries. Neurogenetics, 2009, 10, 355-358.	1.4	23
98	C9orf72 Hexanucleotide Repeat Expansion and Guam Amyotrophic Lateral Sclerosis–Parkinsonism-Dementia Complex. JAMA Neurology, 2013, 70, 742.	9.0	22
99	Analysis of the LRRK2 G2019S Mutation in Alzheimer Disease. Archives of Neurology, 2006, 63, 156.	4.5	21
100	Blood extracellular vesicles carrying synaptic function―and brainâ€related proteins as potential biomarkers for Alzheimer's disease. Alzheimer's and Dementia, 2023, 19, 909-923.	0.8	21
101	A novel Xâ€linked fourâ€repeat tauopathy with Parkinsonism and spasticity. Movement Disorders, 2010, 25, 1409-1417.	3.9	20
102	A Peruvian family with a novel PARK2 mutation: Clinical andÂpathological characteristics. Parkinsonism and Related Disorders, 2015, 21, 444-448.	2.2	20
103	[3H]-(+)-pentazocine binding to sigma recognition sites in human cerebellum. Life Sciences, 1994, 55, PL389-PL395.	4.3	18
104	Some aspects of the validity of the Montreal Cognitive Assessment (MoCA)for evaluating cognitive impairment in Brazilian patients with Parkinson's disease. Dementia E Neuropsychologia, 2016, 10, 333-338.	0.8	18
105	Development of a Sensitive Diagnostic Assay for Parkinson Disease Quantifying α-Synuclein–Containing Extracellular Vesicles. Neurology, 2021, 96, e2332-e2345.	1.1	18
106	The discovery of <i>LRRK2</i> p.R1441S, a novel mutation for Parkinson's disease, adds to the complexity of a mutational hotspot. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 925-930.	1.7	17
107	Diagnostic Validation for Participants in the Washington State Parkinson Disease Registry. Parkinson's Disease, 2018, 2018, 1-6.	1.1	17
108	Functional variants atCYP2A6: New genotyping methods, population genetics, and relevance to studies of tobacco dependence. American Journal of Medical Genetics Part A, 2000, 96, 638-645.	2.4	16

#	Article	IF	CITATIONS
109	Association mapping of the PARK10 region for Parkinson's disease susceptibility genes. Parkinsonism and Related Disorders, 2014, 20, 93-98.	2.2	16
110	Lrrk2 p.Q1111H substitution and Parkinson's disease in Latin America. Parkinsonism and Related Disorders, 2011, 17, 629-631.	2.2	15
111	Exploring human-genome gut-microbiome interaction in Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 74.	5.3	15
112	Common variation in the <i>LRRK2</i> gene is a risk factor for Parkinson's disease. Movement Disorders, 2012, 27, 1823-1826.	3.9	14
113	Variations in the dopamine ?-hydroxylase gene are not associated with the autonomic disorders, pure autonomic failure, or multiple system atrophy. American Journal of Medical Genetics Part A, 2003, 120A, 234-236.	2.4	13
114	Plasticity-related gene 3 (<i>LPPR1</i>) and age at diagnosis of Parkinson disease. Neurology: Genetics, 2018, 4, e271.	1.9	12
115	Genomeâ€Wide Analysis of Copy Number Variation in Latin American Parkinson's Disease Patients. Movement Disorders, 2021, 36, 434-441.	3.9	12
116	A revised allele frequency estimate and haplotype analysis of the DBH deficiency mutation IVS1+2T → C African- and European-Americans. , 2003, 123A, 190-192.	C in	11
117	Semantic fluency and processing speed are reduced in non-cognitively impaired participants with Parkinson's disease. Journal of Clinical and Experimental Neuropsychology, 2021, 43, 469-480.	1.3	10
118	Diagnostic prediction model for levodopa-induced dyskinesia in Parkinson's disease. Arquivos De Neuro-Psiquiatria, 2020, 78, 206-216.	0.8	10
119	Intrafamilial variable phenotype including corticobasal syndrome in a family with p.P301L mutation in the MAPT gene: first report in South America. Neurobiology of Aging, 2017, 53, 195.e11-195.e17.	3.1	9
120	Association of a neuronal nitric oxide synthase gene polymorphism with levodopa-induced dyskinesia in Parkinson's disease. Nitric Oxide - Biology and Chemistry, 2018, 74, 86-90.	2.7	8
121	Novel compound heterozygous FBXO7 mutations in a family with early onset Parkinson's disease. Parkinsonism and Related Disorders, 2020, 80, 142-147.	2.2	8
122	DBH â^'1021C→T does not modify risk or age at onset in Parkinson's disease. Annals of Neurology, 2007, 62, 99-101.	5.3	7
123	Glutamate Receptor Gene GRIN2A, Coffee, and Parkinson Disease. PLoS Genetics, 2014, 10, e1004774.	3.5	7
124	Visualizing disease associations: graphic analysis of frequency distributions as a function of age using moving average plots (MAP) with application to Alzheimer's and Parkinson's disease. Genetic Epidemiology, 2010, 34, 92-99.	1.3	6
125	Relationships Between Sensorimotor Inhibition and Mobility in Older Adults With and Without Parkinson's Disease. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 630-637.	3.6	6
126	The UCHL1 S18Y polymorphism and Parkinson's disease in a Japanese population. Parkinsonism and Related Disorders, 2011, 17, 473-475.	2.2	5

#	Article	IF	CITATIONS
127	Genetic Polymorphism at Codon 129 of the Prion Protein Gene Is Not Associated With Multiple Sclerosis. Archives of Neurology, 2009, 66, 280-1.	4.5	4
128	Response to the letter "Haptoglobin phenotype and Parkinson disease risk―by Delanghe etÂal Parkinsonism and Related Disorders, 2016, 22, 110-111.	2.2	3
129	Sensorimotor Inhibition and Mobility in Genetic Subgroups of Parkinson's Disease. Frontiers in Neurology, 2020, 11, 893.	2.4	3
130	Polygenic risk prediction and SNCA haplotype analysis in a Latino Parkinson's disease cohort. Parkinsonism and Related Disorders, 2022, 102, 7-15.	2.2	2
131	Novel <scp>Lrrk2</scp> â€p. <scp>S1761R</scp> mutation is not a common cause of Parkinson's disease in Spain. Movement Disorders, 2013, 28, 248-248.	3.9	1
132	The Clinical Profile of GBA-Related Lewy Body Disorders. JAMA Neurology, 2016, 73, 1403.	9.0	1
133	Cognition as a mediator for gait and balance impairments in GBA-related Parkinson's disease. Npj Parkinson's Disease, 2022, 8, .	5.3	1
134	Review ofRosenberg's Molecular and Genetic Basis of Neurological and Psychiatric Disease, 5th ed. JAMA Neurology, 2015, 72, 1538.	9.0	0
135	Molecular Genetic Analysis of Plasma Dopamine β-Hydroxylase in Depression. Advances in Behavioral Biology, 2002, , 423-426.	0.2	Ο