J Xavier Prochaska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6098877/publications.pdf

Version: 2024-02-01

399 papers 29,845 citations

87 h-index 155 g-index

402 all docs

402 docs citations

times ranked

402

13900 citing authors

#	Article	IF	Citations
1	A MUltiwavelength Study of ELAN Environments (AMUSE ²). Astronomy and Astrophysics, 2022, 658, A77.	5.1	9
2	Characterizing the Fast Radio Burst Host Galaxy Population and its Connection to Transients in the Local and Extragalactic Universe. Astronomical Journal, 2022, 163, 69.	4.7	91
3	A Fast Radio Burst Progenitor Born in a Galaxy Merger. Astrophysical Journal Letters, 2022, 925, L20.	8.3	7
4	GRB 191016A: The onset of the forward shock and evidence of late energy injection. Monthly Notices of the Royal Astronomical Society, 2022, 511, 6205-6217.	4.4	5
5	Deep Learning of Dark Energy Spectroscopic Instrument Mock Spectra to Find Damped Lyl± Systems. Astrophysical Journal, Supplement Series, 2022, 259, 28.	7.7	8
6	Constraining the Cosmic Baryon Distribution with Fast Radio Burst Foreground Mapping. Astrophysical Journal, 2022, 928, 9.	4.5	16
7	He ii Lyl $$ ± Transmission Spikes and Absorption Troughs in Eight High-resolution Spectra Probing the End of He ii Reionization. Astrophysical Journal, 2022, 927, 175.	4.5	O
8	The CGM ² Survey: Circumgalactic O vi from Dwarf to Massive Star-forming Galaxies. Astrophysical Journal, 2022, 927, 147.	4.5	11
9	Monte Carlo Physarum Machine: Characteristics of Pattern Formation in Continuous Stochastic Transport Networks. Artificial Life, 2022, 28, 22-57.	1.3	7
10	A Multiwavelength Study of ELAN Environments (AMUSE < sup > 2 < /sup >). Mass Budget, Satellites Spin Alignment, and Gas Infall in a Massive z â ¹ /4 3 Quasar Host Halo. Astrophysical Journal, 2022, 930, 72.	4.5	8
11	CO excitation and line energy distributions in gas-selected galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2346-2355.	4.4	4
12	First discoveries and localizations of Fast Radio Bursts with MeerTRAP: real-time, commensal MeerKAT survey. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1961-1974.	4.4	8
13	Jansky Very Large Array Detections of CO(1–0) Emission in H i-absorption-selected Galaxies at z ≳ 2. Astrophysical Journal Letters, 2022, 933, L42.	8.3	4
14	Statistical Correlation between the Distribution of Lyα Emitters and Intergalactic Medium H i at zÂâ^¼Â2.2 Mapped by the Subaru/Hyper Suprime-Cam. Astrophysical Journal, 2021, 907, 3.	4.5	15
15	A Long Stream of Metal-poor Cool Gas around a Massive Starburst Galaxy at $z=2.67$. Astrophysical Journal, 2021, 908, 188.	4.5	11
16	Polyphorm: Structural Analysis of Cosmological Datasets via Interactive Physarum Polycephalum Visualization. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 806-816.	4.4	6
17	On the environments of giant radio galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5104-5114.	4.4	12
18	Modeling the Prompt Optical Emission of GRB 180325A: The Evolution of a Spike from the Optical to Gamma Rays. Astrophysical Journal, 2021, 908, 39.	4.5	7

#	Article	IF	Citations
19	Deep Learning of Sea Surface Temperature Patterns to Identify Ocean Extremes. Remote Sensing, 2021, 13, 744.	4.0	11
20	MUSE analysis of gas around galaxies (MAGG) – III. The gas and galaxy environment of <i>z</i> = 3–4.5 quasars. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3044-3064.	4.4	40
21	Circumgalactic Mg ii Emission from an Isotropic Starburst Galaxy Outflow Mapped by KCWI. Astrophysical Journal, 2021, 909, 151.	4.5	43
22	CGM ² I: The Extent of the Circumgalactic Medium Traced by Neutral Hydrogen. Astrophysical Journal, 2021, 912, 9.	4. 5	29
23	Probabilistic Association of Transients to their Hosts (PATH). Astrophysical Journal, 2021, 911, 95.	4.5	32
24	New Evidence for Extended He ii Reionization at z $\hat{a}\%^3$ 3.5 from He ii Lyman Alpha and Beta Transmission Spikes*. Astrophysical Journal, 2021, 912, 38.	4. 5	12
25	Multiwavelength Follow-up of FRB180309. Astrophysical Journal, 2021, 913, 78.	4.5	2
26	Dating individual quasars with the Heâ€% <scp>ii < /scp> proximity effect. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5084-5103.</scp>	4.4	13
27	A High-resolution View of Fast Radio Burst Host Environments. Astrophysical Journal, 2021, 917, 75.	4.5	41
28	Constraining bright optical counterparts of fast radio bursts. Astronomy and Astrophysics, 2021, 653, A119.	5.1	10
29	Chronicling the Host Galaxy Properties of the Remarkable Repeating FRB 20201124A. Astrophysical Journal Letters, 2021, 919, L23.	8.3	45
30	Anomaly detection in Hyper Suprime-Cam galaxy images with generative adversarial networks. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2946-2963.	4.4	16
31	A [C ii] 158 μm emitter associated with an O i absorber at the end of the reionization epoch. Natu Astronomy, 2021, 5, 1110-1117.	ire 10.1	9
32	Metal-enriched halo gas across galaxy overdensities over the last 10 billion years. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4573-4599.	4.4	30
33	The COS Absorption Survey of Baryon Harbors: unveiling the physical conditions of circumgalactic gas through multiphase Bayesian ionization modelling. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4993-5037.	4.4	29
34	The fast radio burst population evolves, consistent with the star formation rate. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 510, L18-L23.	3.3	39
35	The <i>>z</i>)–DM distribution of fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4775-4802.	4.4	52
36	The Nature of Hi-absorption-selected Galaxies at z â‰^ 4. Astrophysical Journal, 2021, 921, 68.	4.5	7

#	Article	IF	CITATIONS
37	The Third Data Release of the KODIAQ Survey. Astronomical Journal, 2021, 161, 45.	4.7	6
38	Multiphase outflows in post-starburst E+A galaxies – I. General sample properties and the prevalence of obscured starbursts. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4457-4479.	4.4	14
39	Optical Spectroscopy of Dual Quasar Candidates from the Subaru HSC-SSP program. Astrophysical Journal, 2021, 922, 83.	4.5	13
40	Dissecting the Local Environment of FRB 190608 in the Spiral Arm of its Host Galaxy. Astrophysical Journal, 2021, 922, 173.	4. 5	31
41	Estimating the Contribution of Foreground Halos to the FRB 180924 Dispersion Measure. Astrophysical Journal, 2021, 921, 134.	4.5	7
42	Massive Molecular Outflow and 100 kpc Extended Cold Halo Gas in the Enormous Lyl± Nebula of QSO 1228+3128. Astrophysical Journal Letters, 2021, 922, L29.	8.3	16
43	Discovery of a Protocluster Core Associated with an Enormous Lya Nebula at $z=2.3$. Astrophysical Journal, 2021, 922, 236.	4.5	9
44	A Multiwavelength Study of ELAN Environments (AMUSE $<$ sup $>$ 2 $<$ /sup $>$). Detection of a Dusty Star-forming Galaxy within the Enormous Lyl \pm Nebula at z=2.3 Sheds Light on its Origin. Astrophysical Journal, 2021, 923, 200.	4. 5	12
45	Optically thin spatially resolved Mg <scp>ii</scp> emission maps the escape of ionizing photons. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2554-2574.	4.4	47
46	Constraining magnetic fields in the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3142-3151.	4.4	19
47	Quasar Sightline and Galaxy Evolution (QSAGE) survey – II. Galaxy overdensities around UV luminous quasars at <i>z</i> Â= 1–2. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3083-3096.	4.4	11
48	A cold, massive, rotating disk galaxy 1.5 billion years after the Big Bang. Nature, 2020, 581, 269-272.	27.8	71
49	The Host Galaxies and Progenitors of Fast Radio Bursts Localized with the Australian Square Kilometre Array Pathfinder. Astrophysical Journal Letters, 2020, 895, L37.	8.3	113
50	A census of baryons in the Universe from localized fast radio bursts. Nature, 2020, 581, 391-395.	27.8	341
51	<i>Gaia</i> -assisted discovery of a detached low-ionisation BAL quasar with very large ejection velocities. Astronomy and Astrophysics, 2020, 634, A111.	5.1	4
52	A Data-driven Technique Using Millisecond Transients to Measure the Milky Way Halo. Astrophysical Journal Letters, 2020, 895, L49.	8.3	20
53	Revealing the Dark Threads of the Cosmic Web. Astrophysical Journal Letters, 2020, 891, L35.	8.3	25
54	Spectropolarimetric Analysis of FRB 181112 at Microsecond Resolution: Implications for Fast Radio Burst Emission Mechanism. Astrophysical Journal Letters, 2020, 891, L38.	8.3	82

#	Article	IF	Citations
55	Effective Opacity of the Intergalactic Medium from Galaxy Spectra Analysis. Astronomical Journal, 2020, 160, 37.	4.7	4
56	Deep Hubble Space Telescope Imaging on the Extended Lyα Emission of a QSO at zÂ=Â2.19 with a Damped Lyman Alpha System as a Natural Coronagraph. Astrophysical Journal Letters, 2020, 889, L12.	8.3	2
57	MUSE Analysis of Gas around Galaxies (MAGG) – I: Survey design and the environment of a near pristine gas cloud at <i>>z</i> â‰^ 3.5. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2057-2074.	4.4	36
58	Testing galaxy formation simulations with damped Lyman-α abundance and metallicity evolution. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2835-2846.	4.4	10
59	Discovery of a Rare Late-type, Low-mass Wolf–Rayet Star in the LMC. Astrophysical Journal, 2020, 888, 54.	4.5	6
60	A search for supernova-like optical counterparts to ASKAP-localised fast radio bursts. Astronomy and Astrophysics, 2020, 639, A119.	5.1	12
61	MUSE Analysis of Gas around Galaxies (MAGG) – II: metal-enriched halo gas around <i>z</i> Ââ^¼ 1 galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5022-5046.	4.4	47
62	A semisupervised machine learning search for never-seen gravitational-wave sources. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5408-5419.	4.4	11
63	Pypelt: The Python Spectroscopic Data Reduction Pipeline. Journal of Open Source Software, 2020, 5, 2308.	4.6	128
64	Three-dimensional Distribution Map of H i Gas and Galaxies around an Enormous Lyl± Nebula and Three QSOs at zÂ=Â2.3 Revealed by the H i Tomographic Mapping Technique. Astrophysical Journal, 2020, 896, 45.	4.5	12
65	The PHLEK Survey: A New Determination of the Primordial Helium Abundance. Astrophysical Journal, 2020, 896, 77.	4.5	49
66	Project AMIGA: The Circumgalactic Medium of Andromeda*. Astrophysical Journal, 2020, 900, 9.	4.5	48
67	A Distant Fast Radio Burst Associated with Its Host Galaxy by the Very Large Array. Astrophysical Journal, 2020, 899, 161.	4.5	62
68	First Constraints on Compact Dark Matter from Fast Radio Burst Microstructure. Astrophysical Journal, 2020, 900, 122.	4.5	15
69	Disentangling the Cosmic Web toward FRB 190608. Astrophysical Journal, 2020, 901, 134.	4.5	26
70	Host Galaxy Properties and Offset Distributions of Fast Radio Bursts: Implications for Their Progenitors. Astrophysical Journal, 2020, 903, 152.	4.5	148
71	Limits on Precursor and Afterglow Radio Emission from a Fast Radio Burst in a Star-forming Galaxy. Astrophysical Journal Letters, 2020, 901, L20.	8.3	40
72	High Molecular Gas Masses in Absorption-selected Galaxies at zÂâ‰^Â2. Astrophysical Journal Letters, 2020, 901, L5.	8.3	14

#	Article	IF	CITATIONS
73	Confronting the Magnetar Interpretation of Fast Radio Bursts through Their Host Galaxy Demographics. Astrophysical Journal Letters, 2020, 905, L30.	8.3	16
74	Reverse Shock Emission Revealed in Early Photometry in the Candidate Short GRB 180418A. Astrophysical Journal, 2019, 881, 12.	4.5	21
75	Linking gas and galaxies at high redshift: MUSE surveys the environments of six damped Lyl± systems at z â‰^ 3. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5070-5096.	4.4	33
76	A single fast radio burst localized to a massive galaxy at cosmological distance. Science, 2019, 365, 565-570.	12.6	295
77	Multi-filament gas inflows fuelling young star-forming galaxies. Nature Astronomy, 2019, 3, 822-831.	10.1	34
78	The COS Absorption Survey of Baryon Harbors (CASBaH): Warm–Hot Circumgalactic Gas Reservoirs Traced by Ne viii Absorption. Astrophysical Journal Letters, 2019, 877, L20.	8.3	55
79	A Metal-poor Damped Lyl± System at Redshift 6.4. Astrophysical Journal, 2019, 885, 59.	4.5	38
80	The COS Absorption Survey of Baryon Harbors: The Galaxy Database and Cross-correlation Analysis of O vi Systems ^{â^—} . Astrophysical Journal, Supplement Series, 2019, 243, 24.	7.7	22
81	The low density and magnetization of a massive galaxy halo exposed by a fast radio burst. Science, 2019, 366, 231-234.	12.6	204
82	Kinematics of C iv and [O iii] emission in luminous high-redshift quasars. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5335-5348.	4.4	26
83	Quasar Sightline and Galaxy Evolution (QSAGE) survey – I. The galaxy environment of OÂvi absorbers up to zÂ= 1.4 around PKS 0232â~'04. Monthly Notices of the Royal Astronomical Society, 2019, 486, 21-41.	4.4	26
84	The power spectrum of the Lyman- \hat{l}_{\pm} Forest at z & amp; lt; 0.5. Monthly Notices of the Royal Astronomical Society, 2019, 486, 769-782.	4.4	30
85	Spectroscopic Redshift of the Gamma-Ray Blazar B2 1215+30 from Lyl± Emission. Astronomical Journal, 2019, 157, 41.	4.7	4
86	Discovery of a Lyα-emitting Dark Cloud within the zÂâ^1/4Â2.8 SMM J02399-0136 System. Astrophysical Journal, 2019, 875, 130.	4.5	11
87	The Evolution of the He ii-ionizing Background at Redshifts 2.3Â<ÂzÂ<Â3.8 Inferred from a Statistical Sample of 24 HST/COS He ii Lyα Absorption Spectra*. Astrophysical Journal, 2019, 875, 111.	4.5	31
88	CGM properties in VELA and NIHAO simulations; the OVI ionization mechanism: dependence on redshift, halo mass, and radius. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3625-3645.	4.4	25
89	A multiwavelength analysis of a collection of short-duration GRBs observed between 2012 and 2015. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5294-5318.	4.4	22
90	QSO MUSEUM I: a sample of 61 extended Ly α-emission nebulae surrounding <i>z</i> j>â^1/4 3 quasars. Monthl Notices of the Royal Astronomical Society, 2019, 482, 3162-3205.	y _{4.4}	106

#	Article	IF	CITATIONS
91	Constraining sub-parsec binary supermassive black holes in quasars with multi-epoch spectroscopy – III. Candidates from continued radial velocity tests. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3288-3307.	4.4	42
92	The large- and small-scale properties of the intergalactic gas in the Slug Ly α nebula revealed by MUSE He <scp>ii</scp> emission observations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5188-5204.	4.4	78
93	Imprints of the first billion years: Lyman limit systems at $i \ge z < i \ge \hat{a}^1/4 $ 5. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1456-1470.	4.4	12
94	GRB 180620A: Evidence for Late-time Energy Injection. Astrophysical Journal, 2019, 887, 254.	4.5	11
95	Galactic Gas Flows from Halo to Disk: Tomography and Kinematics at the Milky Way's Disk–Halo Interface. Astrophysical Journal, 2019, 882, 76.	4.5	17
96	A VLT/FORS2 Narrowband Imaging Search for Mg ii Emission around z $\hat{A}\hat{a}^1/4\hat{A}0.7$ Galaxies. Astrophysical Journal, 2019, 879, 7.	4.5	8
97	Evolution of the Cool Gas in the Circumgalactic Medium of Massive Halos: A Keck Cosmic Web Imager Survey of Lyl± Emission around QSOs at zÂâ‰^Â2. Astrophysical Journal, Supplement Series, 2019, 245, 23.	7.7	76
98	Discovery of intergalactic bridges connecting two faint $\langle i \rangle z \langle i \rangle$ â $^1/4$ 3 quasars. Astronomy and Astrophysics, 2019, 631, A18.	5.1	14
99	ALMA C ii 158 μm Imaging of an H i-selected Major Merger at zÂâ^¼Â4. Astrophysical Journal Letters, 2019, 886, L35.	'8.3	10
100	[C ii] 158 νm Emission from zÂâ^¼Â4 H i Absorption-selected Galaxies. Astrophysical Journal Letters, 2019, 870, L19.	8.3	28
101	The Cold Circumgalactic Environment of MAMMOTH-I: Dynamically Cold Gas in the Core of an Enormous Lyl± Nebula. Astrophysical Journal, 2019, 887, 86.	4.5	19
102	The Nature of Ionized Gas in the Milky Way Galactic Fountain. Astrophysical Journal, 2019, 887, 89.	4.5	24
103	HI Absorption in the Intergalactic Medium. Saas-Fee Advanced Course, 2019, , 111-188.	1.1	2
104	Massive, Absorption-selected Galaxies at Intermediate Redshifts. Astrophysical Journal Letters, 2018, 856, L23.	8.3	27
105	Deep learning of quasar spectra to discover and characterize damped Ly $\hat{l}\pm$ systems. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1151-1168.	4.4	52
106	Quasar 2175 \hat{A} dust absorbers \hat{a} \in II. Correlation analysis and relationship with other absorption line systems. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4870-4880.	4.4	13
107	A VLT/MUSE galaxy survey towards QSO Q1410: looking for a WHIM traced by BLAs in inter-cluster filamentsã~ Monthly Notices of the Royal Astronomical Society, 2018, 477, 2991-3013.	4.4	10
108	On the CGM Fundamental Plane: The Halo Mass Dependency of Circumgalactic H i. Astrophysical Journal, 2018, 864, 132.	4.5	19

#	Article	IF	CITATIONS
109	Searching for the Lowest-metallicity Galaxies in the Local Universe. Astrophysical Journal, 2018, 863, 134.	4.5	29
110	ALMA observations of a metal-rich damped Ly \hat{Al} ± absorber at z = 2.5832: evidence for strong galactic winds in a galaxy group. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2126-2132.	4.4	19
111	Revealing the Host Galaxy of a Quasar 2175 Ã Dust Absorber at zÂ=Â 2.12. Astrophysical Journal Letters, 2018, 857, L12.	8.3	7
112	Overdensity of submillimeter galaxies around the $\langle i \rangle z \langle j \rangle$ â‰ f 2.3 MAMMOTH-1 nebula. Astronomy and Astrophysics, 2018, 620, A202.	5.1	21
113	Two more, bright, zÂ>Â6 quasars from VST ATLAS and WISE. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1649-1659.	4.4	32
114	Extreme Circumgalactic H i and C iii Absorption around the Most Massive, Quenched Galaxies. Astrophysical Journal, 2018, 867, 106.	4.5	6
115	Hunting for metals using XQ-100 Legacy Survey composite spectra. Monthly Notices of the Royal Astronomical Society, 2018, 481, 105-121.	4.4	12
116	A Search for the Host Galaxy of FRB 171020. Astrophysical Journal Letters, 2018, 867, L10.	8.3	38
117	On the limitations of statistical absorption studies with the Sloan Digital Sky Surveys l–III. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3520-3529.	4.4	4
118	The gas and stellar mass of low-redshift damped Lyman- \hat{l}_{\pm} absorbers. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L54-L58.	3.3	8
119	The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package [*] . Astronomical Journal, 2018, 156, 123.	4.7	4,142
120	First Data Release of the COSMOS Lyl̂± Mapping and Tomography Observations: 3D Lyl̂± Forest Tomography at 2.05Â<ÂzÂ<Â2.55. Astrophysical Journal, Supplement Series, 2018, 237, 31.	7.7	80
121	Direct evidence of AGN feedback: a post-starburst galaxy stripped of its gas by AGN-driven winds. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3993-4016.	4.4	43
122	MAHALO Deep Cluster Survey I. Accelerated and enhanced galaxy formation in the densest regions of a protocluster at zÂ=Â2.5. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1977-1999.	4.4	43
123	The astrophysical consequences of intervening galaxy gas on fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2018, 474, 318-325.	4.4	17
124	Inspiraling halo accretion mapped in Ly α emission around a zÂâ^¼Â3 quasar. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3907-3940.	4.4	79
125	Molecular Emission from a Galaxy Associated with a z $\hat{a}^{1/4}$ 2.2 Damped Lyl Absorber. Astrophysical Journal Letters, 2018, 856, L12.	8.3	31
126	The Spectral and Environment Properties of zÂâ^¼Â2.0â€"2.5 Quasar Pairs. Astrophysical Journal, 2018, 860, 41.	4.5	16

#	Article	IF	Citations
127	Keck/Palomar Cosmic Web Imagers Reveal an Enormous Lyα Nebula in an Extremely Overdense Quasi-stellar Object Pair Field at zÂ=Â2.45. Astrophysical Journal Letters, 2018, 861, L3.	8.3	41
128	Spectral Image Classification with Deep Learning. Publications of the Astronomical Society of the Pacific, 2018, 130, 094501.	3.1	2
129	ALMA + VLT observations of a damped Lyman-α absorbing galaxy: massive, wide CO emission, gas-rich but with very low SFR. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4039-4055.	4.4	27
130	Quasars Probing Quasars. IX. The Kinematics of the Circumgalactic Medium Surrounding z \hat{a}^4 2 Quasars. Astrophysical Journal, 2018, 857, 126.	4.5	21
131	Quasars Probing Quasars. X. The Quasar Pair Spectral Database. Astrophysical Journal, Supplement Series, 2018, 236, 44.	7.7	14
132	Dissecting cold gas in a high-redshift galaxy using a lensed background quasar. Astronomy and Astrophysics, 2018, 619, A142.	5.1	12
133	Photometric Observations of Supernova 2013cq Associated with GRB 130427A. Astrophysical Journal, 2017, 837, 116.	4.5	17
134	Discovery of an Enormous Lyl $^\pm$ Nebula in a Massive Galaxy Overdensity at zÂ=Â2.3. Astrophysical Journal, 2017, 837, 71.	4.5	111
135	Implications of zÂâ^1⁄4Â6 Quasar Proximity Zones for the Epoch of Reionization and Quasar Lifetimes. Astrophysical Journal, 2017, 840, 24.	4.5	122
136	Measurement of the small-scale structure of the intergalactic medium using close quasar pairs. Science, 2017, 356, 418-422.	12.6	39
137	No Evidence for Feedback: Unexceptional Low-ionization Winds in Host Galaxies of Low Luminosity Active Galactic Nuclei at Redshift z \hat{a}^4 1. Astrophysical Journal, 2017, 841, 83.	4.5	11
138	The igmspec database of public spectra probing the intergalactic medium. Astronomy and Computing, 2017, 19, 27-33.	1.7	21
139	[C <scp>ii</scp>] 158-μm emission from the host galaxies of damped Lyman-alpha systems. Science, 2017, 355, 1285-1288.	12.6	50
140	The COS-Halos Survey: Metallicities in the Low-redshift Circumgalactic Medium ^{â^—} . Astrophysical Journal, 2017, 837, 169.	4.5	203
141	Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science, 2017, 358, 1556-1558.	12.6	811
142	Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis. Science, 2017, 358, 1570-1574.	12.6	517
143	Electromagnetic evidence that SSS17a is the result of a binary neutron star merger. Science, 2017, 358, 1583-1587.	12.6	203
144	Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger. Science, 2017, 358, 1574-1578.	12.6	240

#	Article	IF	CITATIONS
145	A Neutron Star Binary Merger Model for GW170817/GRB 170817A/SSS17a. Astrophysical Journal Letters, 2017, 848, L34.	8.3	101
146	The Unprecedented Properties of the First Electromagnetic Counterpart to a Gravitational-wave Source. Astrophysical Journal Letters, 2017, 848, L26.	8.3	31
147	The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source*. Astrophysical Journal Letters, 2017, 848, L30.	8.3	54
148	Correcting CÂiv-based virial black hole masses. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2120-2142.	4.4	131
149	The Second Data Release of the KODIAQ Survey. Astronomical Journal, 2017, 154, 114.	4.7	44
150	Mapping the Most Massive Overdensities through Hydrogen (MAMMOTH). II. Discovery of the Extremely Massive Overdensity BOSS1441 at zÂ=Â2.32. Astrophysical Journal, 2017, 839, 131.	4.5	84
151	Project AMIGA: A Minimal Covering Factor for Optically Thick Circumgalactic Gas around the Andromeda Galaxy. Astrophysical Journal, 2017, 846, 141.	4.5	17
152	ALMA and RATIR observations of GRBÂ131030A. Publication of the Astronomical Society of Japan, 2017, 69,	2.5	2
153	The Circumgalactic Medium of Submillimeter Galaxies. II. Unobscured QSOs within Dusty Starbursts and QSO Sightlines with Impact Parameters below 100 kpc. Astrophysical Journal, 2017, 844, 123.	4.5	6
154	The survival of gas clouds in the circumgalactic medium of Milky Way-like galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 470, 114-125.	4.4	110
155	Evidence of ongoing AGN-driven feedback in a quiescent post-starburst E+A galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1687-1702.	4.4	31
156	Statistical Detection of the He ii Transverse Proximity Effect: Evidence for Sustained Quasar Activity for >25 Million Years. Astrophysical Journal, 2017, 847, 81.	4.5	36
157	The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe. Astrophysical Journal Letters, 2017, 845, L22.	8.3	30
158	Circumgalactic Oxygen Absorption and Feedback. Astrophysical Journal Letters, 2017, 846, L24.	8.3	34
159	Quasar 2175 à dust absorbers – I. Metallicity, depletion pattern and kinematics. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2196-2220.	4.4	17
160	Witnessing galaxy assembly in an extended zâ‰^3 structure. Monthly Notices of the Royal Astronomical Society, 2017, 471, 3686-3698.	4.4	41
161	Statistical Detection of the He ii Transverse Proximity Effect: Evidence for Sustained Quasar Activity for >25 Million Years. Frontiers in Astronomy and Space Sciences, 2017, 4, .	2.8	O
162	Giant Metrewave Radio Telescope detection of associated H i 21-cm absorption at <i>>z</i> Â=Â1.2230 towards TXSÂ1954+513. Monthly Notices of the Royal Astronomical Society, 2017, 465, 5011-5015.	4.4	21

#	Article	IF	Citations
163	Gas inflow and outflow in an interacting high-redshift galaxy. Astronomy and Astrophysics, 2017, 607, A107.	5.1	16
164	On the selection of damped Lyman \hat{l}_{\pm} systems using Mg <scp>ii</scp> absorption at 2 & amp;lt; <i>z</i> abs & amp;lt; 4. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 464, L56-L60.	3.3	15
165	Significant and variable linear polarization during the prompt optical flash of GRB 160625B. Nature, 2017, 547, 425-427.	27.8	93
166	THE CIRCUMGALACTIC MEDIUM OF SUBMILLIMETER GALAXIES. I. FIRST RESULTS FROM A RADIO-IDENTIFIED SAMPLE. Astrophysical Journal, 2016, 832, 52.	4.5	9
167	A DEEP SEARCH FOR FAINT GALAXIES ASSOCIATED WITH VERY LOW REDSHIFT C iv ABSORBERS. III. THE MASSAND ENVIRONMENT-DEPENDENT CIRCUMGALACTIC MEDIUM. Astrophysical Journal, 2016, 832, 124.	4.5	79
168	CONSTRAINING THE LIFETIME AND OPENING ANGLE OF QUASARS USING FLUORESCENT LyαÂEMISSION: THE CASE OF Q0420–388. Astrophysical Journal, 2016, 830, 120.	4.5	27
169	XQ-100: A legacy survey of one hundred 3.5 \hat{a} % 2 <i>z</i> \hat{a} % 2 4.5 quasars observed with VLT/X-shooter. Astronomy and Astrophysics, 2016, 594, A91.	5.1	72
170	THE COS-HALOS SURVEY: ORIGINS OF THE HIGHLY IONIZED CIRCUMGALACTIC MEDIUM OF STAR-FORMING GALAXIES. Astrophysical Journal, 2016, 833, 54.	4.5	141
171	The Neutral Hydrogen Cosmological Mass Density at $z=5$. Proceedings of the International Astronomical Union, 2016, 11, 309-314.	0.0	1
172	The Bright Symbiotic Mira EF Aquilae. Publications of the Astronomical Society of the Pacific, 2016, 128, 024201.	3.1	6
173	THE UV-BRIGHT QUASAR SURVEY (UVQS): DR1. Astronomical Journal, 2016, 152, 25.	4.7	33
174	MAPPING THE MOST MASSIVE OVERDENSITY THROUGH HYDROGEN (MAMMOTH). I. METHODOLOGY. Astrophysical Journal, 2016, 833, 135.	4.5	66
175	EARLY AND EXTENDED HELIUM REIONIZATION OVER MORE THAN 600 MILLION YEARS OF COSMIC TIME*. Astrophysical Journal, 2016, 825, 144.	4.5	90
176	THE COSMIC EVOLUTION OF THE METALLICITY DISTRIBUTION OF IONIZED GAS TRACED BY LYMAN LIMIT SYSTEMS. Astrophysical Journal, 2016, 833, 283.	4.5	64
177	FIRST CONNECTION BETWEEN COLD GAS IN EMISSION AND ABSORPTION: CO EMISSION FROM A GALAXY–QUASAR PAIR. Astrophysical Journal Letters, 2016, 820, L39.	8.3	31
178	SHADOW OF A COLOSSUS: A $z=2.44$ GALAXY PROTOCLUSTER DETECTED IN 3D Lyα FOREST TOMOGRAPHIC MAPPING OF THE COSMOS FIELD. Astrophysical Journal, 2016, 817, 160.	4.5	63
179	Nature and statistical properties of quasar associated absorption systems in the XQ-100 Legacy Survey. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3285-3301.	4.4	32
180	Chemical abundances of the damped Lyman \hat{l}_{\pm} systems in the XQ-100 survey. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3021-3037.	4.4	36

#	Article	IF	CITATIONS
181	THE STACKED LYα EMISSION PROFILE FROM THE CIRCUM-GALACTIC MEDIUM OF zÂâ^¼Â2 QUASARS*. Astrophy Journal, 2016, 829, 3.	rsical 4.5	51
182	Precise limits on cosmological variability of the fine-structure constant with zinc and chromium quasar absorption lines. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2461-2479.	4.4	27
183	A UNIVERSAL DENSITY STRUCTURE FOR CIRCUMGALACTIC GAS. Astrophysical Journal, 2016, 830, 87.	4.5	98
184	LOW-METALLICITY ABSORBERS ACCOUNT FOR HALF OF THE DENSE CIRCUMGALACTIC GAS AT z ≲ 1* â€. Astrophysical Journal, 2016, 831, 95.	4.5	62
185	THE OPTICAL VARIABILITY OF SDSS QUASARS FROM MULTI-EPOCH SPECTROSCOPY. III. A SUDDEN UV CUTOFF IN QUASAR SDSS J2317+0005. Astrophysical Journal, 2016, 826, 186.	4.5	8
186	QUASARS PROBING QUASARS. VIII. THE PHYSICAL PROPERTIES OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDING z â ⁻¹ ⁄4Â2–3 MASSIVE GALAXIES HOSTING QUASARS. Astrophysical Journal, Supplement Series, 2016, 226, 25.	7.7	60
187	MUSE searches for galaxies near very metal-poor gas clouds at $\langle i \rangle z \langle i \rangle \hat{a}^1 / 4$ 3: new constraints for cold accretion models. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1978-1988.	4.4	66
188	Detailed design of a deployable tertiary mirror for the Keck I telescope. Proceedings of SPIE, 2016, , .	0.8	1
189	The physical properties of $i>z< li>>$; 2 Lyman limit systems: new constraints for feedback and accretion models. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4100-4121.	4.4	83
190	UPPER LIMITS FROM FIVE YEARS OF BLAZAR OBSERVATIONS WITH THE VERITAS CHERENKOV TELESCOPES. Astronomical Journal, 2016, 151, 142.	4.7	24
191	DISCOVERY OF A DAMPED LyÎ \pm ABSORBER AT z = 3.3 ALONG A GALAXY SIGHT-LINE IN THE SSA22 FIELD. Astrophysical Journal, 2016, 817, 161.	4.5	11
192	OPTICAL AND NEAR-INFRARED OBSERVATIONS OF SN 2013DX ASSOCIATED WITH GRB 130702A. Astrophysical Journal, 2016, 818, 79.	4.5	40
193	Towards the statistical detection of the warm–hot intergalactic medium in intercluster filaments of the cosmic web. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2662-2697.	4.4	31
194	The evolution of neutral gas in damped LymanÂα systems from the XQ-100 survey. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4488-4505.	4.4	64
195	THE H i CONTENT OF THE UNIVERSE OVER THE PAST 10 GYR. Astrophysical Journal, 2016, 818, 113.	4.5	74
196	AN ULTRAVIOLET SPECTRUM OF THE TIDAL DISRUPTION FLARE ASASSN-14li. Astrophysical Journal Letters, 2016, 818, L32.	8.3	55
197	The central engine of GRB 130831A and the energy breakdown of a relativistic explosion. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1027-1042.	4.4	21
198	Highly ionized region surrounding SN Refsdal revealed by MUSE. Astronomy and Astrophysics, 2016, 585, A27.	5.1	21

#	Article	IF	CITATIONS
199	iPTF14yb: THE FIRST DISCOVERY OF A GAMMA-RAY BURST AFTERGLOW INDEPENDENT OF A HIGH-ENERGY TRIGGER. Astrophysical Journal Letters, 2015, 803, L24.	8.3	50
200	THE FIRST DATA RELEASE OF THE KODIAQ SURVEY. Astronomical Journal, 2015, 150, 111.	4.7	71
201	DEEP HE ii AND C iv SPECTROSCOPY OF A GIANT LY <i>α</i> NEBULA: DENSE COMPACT GAS CLUMPS IN THE CIRCUMGALACTIC MEDIUM OF A <i>z</i> 2 QUASAR. Astrophysical Journal, 2015, 809, 163.	4.5	64
202	HAPPY BIRTHDAY <i>SWIFT</i> : ULTRA-LONG GRB 141121A AND ITS BROADBAND AFTERGLOW. Astrophysical Journal, 2015, 812, 122.	4.5	18
203	A DEEP SEARCH FOR FAINT GALAXIES ASSOCIATED WITH VERY LOW-REDSHIFT C iv ABSORBERS. II. PROGRAM DESIGN, ABSORPTION-LINE MEASUREMENTS, AND ABSORBER STATISTICS. Astrophysical Journal, 2015, 815, 91.	4.5	34
204	THE KECK + MAGELLAN SURVEY FOR LYMAN LIMIT ABSORPTION. III. SAMPLE DEFINITION AND COLUMN DENSITY MEASUREMENTS. Astrophysical Journal, Supplement Series, 2015, 221, 2.	7.7	40
205	The chemistry of the most metal-rich damped Lyman α systems at <i>z</i> Àâ^1/4Â2 – II. Context with the Local Group. Monthly Notices of the Royal Astronomical Society, 2015, 452, 4326-4346.	4.4	32
206	A detailed study of the optical attenuation of gamma-ray bursts in the Swift era. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2919-2936.	4.4	26
207	The neutral hydrogen cosmological mass density at $\langle i \rangle z \langle i \rangle = 5$. Monthly Notices of the Royal Astronomical Society, 2015, 452, 217-234.	4.4	135
208	The first ultraviolet quasar-stacked spectrum at z $\hat{a}\% f$ 2.4 from WFC3. Monthly Notices of the Royal Astronomical Society, 2015, 449, 4204-4220.	4.4	197
209	Using Machine Learning to classify the diffuse interstellar bands. Monthly Notices of the Royal Astronomical Society, 2015, 451, 332-352.	4.4	19
210	Metal-enriched, subkiloparsec gas clumps in the circumgalactic medium of a faint zÂ=Â2.5 galaxyâ~ Monthly Notices of the Royal Astronomical Society, 2015, 446, 18-37.	4.4	104
211	A search for Hα emission in high-metallicity damped Lyman α systems at zÂâ^1/4Â2.4. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2832-2839.	4.4	7
212	Cold gas and a Milky Way-type 2175-Ã bump in a metal-rich and highly depleted absorption system. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1751-1766.	4.4	28
213	PROBING THE PHYSICAL CONDITIONS OF ATOMIC GAS AT HIGH REDSHIFT. Astrophysical Journal, 2015, 800, 7.	4.5	36
214	The Most Metal-rich Damped Lyα Systems at <i>z</i> Â≳Â1.5 I: The Data. Publications of the Astronomical Society of the Pacific, 2015, 127, 167-210.	3.1	15
215	A giant protogalactic disk linked to the cosmic web. Nature, 2015, 524, 192-195.	27.8	70
216	Dusting off the diffuse interstellar bands: DIBs and dust in extragalactic Sloan Digital Sky Survey spectra. Monthly Notices of the Royal Astronomical Society, 2015, 447, 545-558.	4.4	24

#	Article	IF	CITATIONS
217	Directly imaging damped Ly α galaxies at z > 2 – III. The star formation rates of neutral gas reservoirs at z â^¼ 2.7. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3178-3198.	4.4	66
218	Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe. Science, 2015, 348, 779-783.	12.6	187
219	Data Reduction with the MIKE Spectrometer. Publications of the Astronomical Society of the Pacific, 2015, 127, 911-930.	3.1	23
220	UNVEILING THE SECRETS OF METALLICITY AND MASSIVE STAR FORMATION USING DLAS ALONG GAMMA-RAY BURSTS. Astrophysical Journal, 2015, 804, 51.	4.5	56
221	A DEEP NARROWBAND IMAGING SEARCH FOR C iv AND He ii EMISSION FROM Ly <i>α</i> BLOBS. Astrophysical Journal, 2015, 804, 26.	4.5	41
222	DISSECTING THE GASEOUS HALOS OF <i>z </i> $\hat{a}^{1}/4$ 2 DAMPED Ly <i>\hat{i} ± </i> SYSTEMS WITH CLOSE QUASAR PAIRS. Astrophysical Journal, 2015, 808, 38.	4.5	50
223	Time variations of narrow absorption lines in high resolution quasar spectra. Astronomy and Astrophysics, 2015, 581, A109.	5.1	11
224	IDENTIFYING HIGH-REDSHIFT GAMMA-RAY BURSTS WITH RATIR. Astronomical Journal, 2014, 148, 2.	4.7	9
225	LYα FOREST TOMOGRAPHY FROM BACKGROUND GALAXIES: THE FIRST MEGAPARSEC-RESOLUTION LARGE-SCALE STRUCTURE MAP AT <i>z</i> > 2. Astrophysical Journal Letters, 2014, 795, L12.	8.3	70
226	REVERBERATION MAPPING OF THE <i>KEPLER </i> FIELD AGN KA1858+4850. Astrophysical Journal, 2014, 795, 38.	4.5	33
227	The spin temperature of high-redshift damped Lyman α systems. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2131-2166.	4.4	95
228	Towards a unified description of the intergalactic medium at redshift z â‰^ 2.5. Monthly Notices of the Royal Astronomical Society, 2014, 438, 476-486.	4.4	47
229	Discovery of a transparent sightline at i•≲ 20 kpc from an interacting pair of galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 438, 3039-3048.	4.4	17
230	Design development of a deployable tertiary mirror for Keck. , 2014, , .		0
231	Directly imaging damped Lyl̃± galaxies at zÂ>Â2 – II. Imaging and spectroscopic observations of 32 quasar fields. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1282-1300.	4.4	33
232	The Giant Gemini GMOS survey of zem > 4.4 quasars – I. Measuring the mean free path across cosmic time. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1745-1760.	4.4	146
233	A trio of gamma-ray burst supernovae:. Astronomy and Astrophysics, 2014, 568, A19.	5.1	62
234	QUASARS PROBING QUASARS. VII. THE PINNACLE OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDS MASSIVE $\langle i \rangle \hat{a}^1/4$ 2 GALAXIES. Astrophysical Journal, 2014, 796, 140.	4.5	98

#	Article	IF	CITATIONS
235	THE COS-HALOS SURVEY: PHYSICAL CONDITIONS AND BARYONIC MASS IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM. Astrophysical Journal, 2014, 792, 8.	4.5	464
236	THE RAPID DECLINE IN METALLICITY OF DAMPED Lyα SYSTEMS AT <i>>z</i> > â^1/4 5. Astrophysical Journal Letters, 2014, 782, L29.	8.3	108
237	EVIDENCE FOR UBIQUITOUS COLLIMATED GALACTIC-SCALE OUTFLOWS ALONG THE STAR-FORMING SEQUENCE AT <i>z</i> a^1/4 0.5. Astrophysical Journal, 2014, 794, 156.	4.5	268
238	CONFRONTING SIMULATIONS OF OPTICALLY THICK GAS IN MASSIVE HALOS WITH OBSERVATIONS AT $\langle i \rangle$ z $\langle i \rangle$ = 2-3. Astrophysical Journal, 2014, 780, 74.	4.5	64
239	GALACTIC AND CIRCUMGALACTIC O VI AND ITS IMPACT ON THE COSMOLOGICAL METAL AND BARYON BUDGETS AT 2 < <i>z</i> 2 < <i>z</i> 6 < <i>z</i> 7 < <i>2 < <i>3 < <i>z8 < <i>3 < <i>z8 < <i>z8 < <i>z8 < <i>z8 < <i>z8 < 8 < <i>z8 < <i< td=""><td>4.5</td><td>92</td></i<></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	4.5	92
240	THE COS-DWARFS SURVEY: THE CARBON RESERVOIR AROUND SUB- <i>L$i\rangle$* GALAXIES. Astrophysical Journal, 2014, 796, 136.</i>	4.5	196
241	Constraints on the gas masses of low- <i>z</i> damped Lyman α systems. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 443, L29-L33.	3.3	3
242	THE ROLE OF STELLAR FEEDBACK IN THE DYNAMICS OF H II REGIONS. Astrophysical Journal, 2014, 795, 121.	4. 5	109
243	A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar. Nature, 2014, 506, 63-66.	27.8	284
244	A BUDGET AND ACCOUNTING OF METALS AT <i>z</i> e>â^1/4 0: RESULTS FROM THE COS-HALOS SURVEY. Astrophysical Journal, 2014, 786, 54.	4.5	256
245	The host of the SN-less GRB 060505 in high resolution. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2034-2048.	4.4	37
246	The nature of massive black hole binary candidates $\hat{a} \in \mathbb{C}$ II. Spectral energy distribution atlas. Monthly Notices of the Royal Astronomical Society, 2014, 441, 316-332.	4.4	9
247	New developments in instrumentation at the W. M. Keck Observatory., 2014,,.		2
248	THE COS-HALOS SURVEY: RATIONALE, DESIGN, AND A CENSUS OF CIRCUMGALACTIC NEUTRAL HYDROGEN. Astrophysical Journal, 2013, 777, 59.	4.5	285
249	A refined measurement of the mean transmitted flux in the Ly $\hat{l}\pm$ forest over 2 < z < 5 using composite quasar spectra. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2067-2081.	4.4	137
250	A high molecular fraction in a subdamped absorber at $z\hat{A}$ = 0.56 \hat{a} Monthly Notices of the Royal Astronomical Society, 2013, 433, 178-193.	4.4	22
251	A search for boron in damped Lyl̂ \pm systems. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2892-2906.	4.4	8
252	AN EXPLANATION FOR THE DIFFERENT X-RAY TO OPTICAL COLUMN DENSITIES IN THE ENVIRONMENTS OF GAMMA RAY BURSTS: A PROGENITOR EMBEDDED IN A DENSE MEDIUM. Astrophysical Journal, 2013, 774, 115.	4.5	17

#	Article	IF	CITATIONS
253	THE FIRM REDSHIFT LOWER LIMIT OF THE MOST DISTANT TeV-DETECTED BLAZAR PKS 1424+240. Astrophysical Journal Letters, 2013, 768, L31.	8.3	62
254	THE COS-HALOS SURVEY: AN EMPIRICAL DESCRIPTION OF METAL-LINE ABSORPTION IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM. Astrophysical Journal, Supplement Series, 2013, 204, 17.	7.7	273
255	METAL-POOR, COOL GAS IN THE CIRCUMGALACTIC MEDIUM OF A $\langle i \rangle z \langle j \rangle = 2.4$ STAR-FORMING GALAXY: DIRECT EVIDENCE FOR COLD ACCRETION?. Astrophysical Journal Letters, 2013, 776, L18.	8.3	67
256	QUASARS PROBING QUASARS. IV. JOINT CONSTRAINTS ON THE CIRCUMGALACTIC MEDIUM FROM ABSORPTION AND EMISSION. Astrophysical Journal, 2013, 766, 58.	4.5	92
257	QSO ABSORPTION SYSTEMS DETECTED IN Ne VIII: HIGH-METALLICITY CLOUDS WITH A LARGE EFFECTIVE CROSS SECTION. Astrophysical Journal, 2013, 767, 49.	4.5	70
258	A SUBSTANTIAL MASS OF COOL, METAL-ENRICHED GAS SURROUNDING THE PROGENITORS OF MODERN-DAY ELLIPTICALS. Astrophysical Journal Letters, 2013, 762, L19.	8.3	82
259	A POPULATION OF MASSIVE, LUMINOUS GALAXIES HOSTING HEAVILY DUST-OBSCURED GAMMA-RAY BURSTS: IMPLICATIONS FOR THE USE OF GRBs AS TRACERS OF COSMIC STAR FORMATION. Astrophysical Journal, 2013, 778, 128.	4.5	160
260	THE BIMODAL METALLICITY DISTRIBUTION OF THE COOL CIRCUMGALACTIC MEDIUM AT < i> z < /i> a $\%^2$ 1. Astrophysical Journal, 2013, 770, 138.	4.5	179
261	THE FUNDAMENTAL PLANE OF DAMPED Lyα SYSTEMS. Astrophysical Journal, 2013, 769, 54.	4.5	100
262	A DEEP SEARCH FOR FAINT GALAXIES ASSOCIATED WITH VERY LOW-REDSHIFT C IV ABSORBERS: A CASE WITH COLD-ACCRETION CHARACTERISTICS. Astrophysical Journal Letters, 2013, 779, L17.	8.3	19
263	ON THE REDSHIFT OF THE VERY HIGH ENERGY BLAZAR 3C 66A. Astrophysical Journal, 2013, 766, 35.	4.5	27
264	DISSECTING THE PROPERTIES OF OPTICALLY THICK HYDROGEN AT THE PEAK OF COSMIC STAR FORMATION HISTORY. Astrophysical Journal, 2013, 775, 78.	4.5	82
265	PRECIOUS METALS IN SDSS QUASAR SPECTRA. II. TRACKING THE EVOLUTION OF STRONG, 0.4 < <i>>z</i> <2.3 Mg II ABSORBERS WITH THOUSANDS OF SYSTEMS. Astrophysical Journal, 2013, 779, 161.	4.5	28
266	AN INDEPENDENT MEASUREMENT OF THE INCIDENCE OF Mg II ABSORBERS ALONG GAMMA-RAY BURST SIGHT LINES: THE END OF THE MYSTERY?. Astrophysical Journal, 2013, 773, 82.	4.5	13
267	GEMINI SPECTROSCOPY OF THE SHORT-HARD GAMMA-RAY BURST GRB 130603B AFTERGLOW AND HOST GALAXY. Astrophysical Journal, 2013, 777, 94.	4.5	40
268	QUASARS PROBING QUASARS. VI. EXCESS H I ABSORPTION WITHIN ONE PROPER Mpc OF <i>z</i> â^1/4 2 QUASAI Astrophysical Journal, 2013, 776, 136.	RS. 4.5	120
269	THE HIGH-ION CONTENT AND KINEMATICS OF LOW-REDSHIFT LYMAN LIMIT SYSTEMS. Astrophysical Journal, 2013, 778, 187.	4.5	30
270	THE CIRCUMGALACTIC MEDIUM OF MASSIVE GALAXIES AT <i>>z</i> \$a^1/4 3: A TEST FOR STELLAR FEEDBACK, GALACTIC OUTFLOWS, AND COLD STREAMS. Astrophysical Journal, 2013, 765, 89.	4.5	168

#	Article	IF	CITATIONS
271	FLASHLIGHT: Fluorescent Lyman-Alpha Survey of cosmic Hydrogen iLlumInated by hIGH-redshifT quasars Proceedings of the International Astronomical Union, 2013, 9, 253-256.	0.0	0
272	PRECIOUS METALS IN SDSS QUASAR SPECTRA. I. TRACKING THE EVOLUTION OF STRONG, 1.5 < z < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < $$	4.5	55
273	THE <i>HST</i> /ACS+WFC3 SURVEY FOR LYMAN LIMIT SYSTEMS. II. SCIENCE. Astrophysical Journal, 2013, 765, 137.	4.5	79
274	First Light with RATIR: An Automated 6-band Optical/NIR Imaging Camera. Proceedings of SPIE, 2012, , .	0.8	46
275	THE COS-HALOS SURVEY: KECK LRIS AND MAGELLAN MagE OPTICAL SPECTROSCOPY. Astrophysical Journal, Supplement Series, 2012, 198, 3.	7.7	80
276	Keck 1 deployable tertiary mirror (K1DM3)., 2012,,.		1
277	VERITAS OBSERVATIONS OF SIX BRIGHT, HARD-SPECTRUM <i>FERMI</i> li>-LAT BLAZARS. Astrophysical Journal, 2012, 759, 102.	4.5	9
278	A METAL-STRONG AND DUST-RICH DAMPED LyÎ \pm ABSORPTION SYSTEM TOWARD THE QUASAR SDSS J115705.52+615521.7. Astrophysical Journal, 2012, 760, 42.	4.5	22
279	THE FIRST OBSERVATIONS OF LOW-REDSHIFT DAMPED Lyα SYSTEMS WITH THE COSMIC ORIGINS SPECTROGRAPH: CHEMICAL ABUNDANCES AND AFFILIATED GALAXIES. Astrophysical Journal, 2012, 744, 93.	4.5	57
280	NOT DEAD YET: COOL CIRCUMGALACTIC GAS IN THE HALOS OF EARLY-TYPE GALAXIES. Astrophysical Journal Letters, 2012, 758, L41.	8.3	128
281	METALLICITY EVOLUTION OF DAMPED Lyα SYSTEMS OUT TO <i>z</i> i>â^1/4 5. Astrophysical Journal, 2012, 755, 89.	. 4.5	292
282	magicc haloes: confronting simulations with observations of the circumgalactic medium at $z=0$. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1270-1277.	4.4	119
283	An empirical relation between sodium absorption and dust extinction. Monthly Notices of the Royal Astronomical Society, 2012, 426, 1465-1474.	4.4	330
284	Performance and calibration of H2RG detectors and SIDECAR ASICs for the RATIR camera. Proceedings of SPIE, 2012, , .	0.8	18
285	Software solution for autonomous observations with H2RG detectors and SIDECAR ASICs for the RATIR camera. Proceedings of SPIE, 2012, , .	0.8	7
286	Automation of the OAN/SPM 1.5-meter Johnson telescope for operations with RATIR. Proceedings of SPIE, 2012, , .	0.8	32
287	On the redshift of the blazar PKSÂ0447-439. Astronomy and Astrophysics, 2012, 545, A68.	5.1	7
288	THE DIRECT DETECTION OF COOL, METAL-ENRICHED GAS ACCRETION ONTO GALAXIES AT <i>z</i> â^1/4 0.5. Astrophysical Journal Letters, 2012, 747, L26.	8.3	146

#	Article	lF	CITATIONS
289	Hâ€fi content, metallicities and spin temperatures of damped and sub-damped Lyl̂± systems in the redshift desert (0.6 < zabs < 1.7)a˜ Monthly Notices of the Royal Astronomical Society, 2012, 424, 293-312.	4.4	34
290	A search of CO emission lines in blazars: the low molecular gas content of BL Lac objects compared to quasars. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2276-2283.	4.4	13
291	Detection of Pristine Gas Two Billion Years After the Big Bang. Science, 2011, 334, 1245-1249.	12.6	148
292	WHAT DRIVES THE EXPANSION OF GIANT H II REGIONS?: A STUDY OF STELLAR FEEDBACK IN 30 DORADUS. Astrophysical Journal, 2011, 731, 91.	4.5	167
293	THE GAS–GALAXY CONNECTION AT <i>>z</i> > _{abs} = 0.35: O VI AND H I ABSORPTION TOWARD J 0943+0531. Astrophysical Journal, 2011, 736, 1.	4.5	58
294	SIMPLE MODELS OF METAL-LINE ABSORPTION AND EMISSION FROM COOL GAS OUTFLOWS. Astrophysical Journal, 2011, 734, 24.	4.5	117
295	MULTIWAVELENGTH OBSERVATIONS OF A0620-00 IN QUIESCENCE. Astrophysical Journal, 2011, 743, 26.	4.5	45
296	SHINING LIGHT ON MERGING GALAXIES. I. THE ONGOING MERGER OF A QUASAR WITH A "GREEN VALLEY― GALAXY. Astrophysical Journal, 2011, 735, 54.	4.5	8
297	A HIGH SIGNAL-TO-NOISE RATIO COMPOSITE SPECTRUM OF GAMMA-RAY BURST AFTERGLOWS. Astrophysical Journal, 2011, 727, 73.	4.5	40
298	LOW-IONIZATION LINE EMISSION FROM A STARBURST GALAXY: A NEW PROBE OF A GALACTIC-SCALE OUTFLOW. Astrophysical Journal, 2011, 728, 55.	4.5	93
299	<i>GALEX</i> FAR-ULTRAVIOLET COLOR SELECTION OF UV-BRIGHT HIGH-REDSHIFT QUASARS. Astrophysical Journal, 2011, 728, 23.	4.5	71
300	THE LAST EIGHT-BILLION YEARS OF INTERGALACTIC Si IV EVOLUTION. Astrophysical Journal, 2011, 729, 87.	4.5	16
301	THE END OF HELIUM REIONIZATION AT <i>z</i> $6\%f$ 2.7 INFERRED FROM COSMIC VARIANCE IN <i>HST</i> /CO He II Lyl± ABSORPTION SPECTRA. Astrophysical Journal Letters, 2011, 733, L24.	S _{8.3}	88
302	AFTERGLOW OBSERVATIONS OF <i>FERMI </i> LARGE AREA TELESCOPE GAMMA-RAY BURSTS AND THE EMERGING CLASS OF HYPER-ENERGETIC EVENTS. Astrophysical Journal, 2011, 732, 29.	4.5	145
303	CONSTRAINING GAMMA-RAY BURST EMISSION PHYSICS WITH EXTENSIVE EARLY-TIME, MULTIBAND FOLLOW-UP. Astrophysical Journal, 2011, 743, 154.	4.5	59
304	PROBING THE INTERGALACTIC MEDIUM/GALAXY CONNECTION. V. ON THE ORIGIN OF Lyα AND O VI ABSORPTION AT <i>z</i> < 0.2. Astrophysical Journal, 2011, 740, 91.	4.5	247
305	MULTIWAVELENGTH OBSERVATIONS OF THE PREVIOUSLY UNIDENTIFIED BLAZAR RX J0648.7+1516. Astrophysical Journal, 2011, 742, 127.	4.5	33
306	EVIDENCE FOR COLD ACCRETION: PRIMITIVE GAS FLOWING ONTO A GALAXY AT <i>z</i> å^1/4 0.274. Astrophysica Journal, 2011, 743, 207.	 4.5	98

#	Article	IF	CITATIONS
307	SPECTRAL POLARIZATION OF THE REDSHIFTED 21 cm ABSORPTION LINE TOWARD 3C 286. Astrophysical Journal, 2011, 733, 24.	4.5	7
308	MULTIPHASE GAS IN GALAXY HALOS: THE O VI LYMAN-LIMIT SYSTEM TOWARD J1009+0713. Astrophysical Journal, 2011, 733, 111.	4.5	75
309	THE FIRST OBSERVATIONS OF LOW-REDSHIFT DAMPED Lyα SYSTEMS WITH THE COSMIC ORIGINS SPECTROGRAPH. Astrophysical Journal, 2011, 732, 35.	4.5	72
310	Metallicities and dust content of proximate damped Lyman $\hat{l}\pm$ systems in the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 2011, 412, 448-468.	4.4	19
311	A faint optical flash in dust-obscured GRB 080603A: implications for GRB prompt emission mechanisms. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2124-2143.	4.4	32
312	Absorption-line systems in simulated galaxies fed by cold streams. Monthly Notices of the Royal Astronomical Society, 2011, 418, 1796-1821.	4.4	257
313	The Hidden Mass and Large Spatial Extent of a Post-Starburst Galaxy Outflow. Science, 2011, 334, 952-955.	12.6	136
314	THE ADVANCED CAMERA FOR SURVEYS+WIDE FIELD CAMERA 3 SURVEY FOR LYMAN LIMIT SYSTEMS. I. THE DATA. Astrophysical Journal, Supplement Series, 2011, 195, 16.	7.7	7
315	MONSTER IN THE DARK: THE ULTRALUMINOUS GRB 080607 AND ITS DUSTY ENVIRONMENT. Astronomical Journal, 2011, 141, 36.	4.7	61
316	PROBING THE IGM/GALAXY CONNECTION. IV. THE LCO/WFCCD GALAXY SURVEY OF 20 FIELDS SURROUNDING UV-BRIGHT QUASARS. Astrophysical Journal, Supplement Series, 2011, 193, 28.	7.7	41
317	The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are a Major Reservoir of Galactic Metals. Science, 2011, 334, 948-952.	12.6	442
318	THE LAST EIGHT-BILLION YEARS OF INTERGALACTIC C IV EVOLUTION. Astrophysical Journal, 2010, 708, 868-908.	4.5	63
319	WAVELENGTH ACCURACY OF THE KECK HIRES SPECTROGRAPH AND MEASURING CHANGES IN THE FINE STRUCTURE CONSTANT. Astrophysical Journal, 2010, 708, 158-170.	4.5	77
320	THE PERSISTENCE OF COOL GALACTIC WINDS IN HIGH STELLAR MASS GALAXIES BETWEEN < i>z < /i> $\hat{a}^{1}/4$ 1.4 AND Astrophysical Journal, 2010, 719, 1503-1525.	â^1/41. 4.5	159
321	COSMOLOGICAL CONCORDANCE OR CHEMICAL COINCIDENCE? DEUTERATED MOLECULAR HYDROGEN ABUNDANCES AT HIGH REDSHIFT. Astrophysical Journal Letters, 2010, 718, L156-L160.	8.3	35
322	THE KECK + MAGELLAN SURVEY FOR LYMAN LIMIT ABSORPTION. II. A CASE STUDY ON METALLICITY VARIATIONS. Astrophysical Journal, 2010, 708, 1221-1237.	4.5	34
323	KECK ECHELLETTE SPECTROGRAPH AND IMAGER OBSERVATIONS OF METAL-POOR DAMPED Lyα SYSTEMS. Astrophysical Journal, 2010, 721, 1-25.	4.5	68
324	PROBING FUNDAMENTAL CONSTANT EVOLUTION WITH NEUTRAL ATOMIC GAS LINES. Astrophysical Journal Letters, 2010, 712, L148-L152.	8.3	23

#	Article	IF	CITATIONS
325	Mechanical configurations for the reionization and transients infrared camera (RATIR). Proceedings of SPIE, 2010, , .	0.8	3
326	A DUSTY Mg II ABSORBER ASSOCIATED WITH THE QUASAR SDSS J003545.13+011441.2. Astrophysical Journal, 2010, 720, 328-336.	4.5	18
327	A DEFINITIVE SURVEY FOR LYMAN LIMIT SYSTEMS AT z \hat{a}^4 3.5 WITH THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, 2010, 718, 392-416.	4.5	144
328	Ionization corrections in a multiphase interstellar medium: lessons from a zabs \hat{a}^4 2 sub-DLA. Monthly Notices of the Royal Astronomical Society, 2010, 408, 2071-2082.	4.4	21
329	A high-velocity narrow absorption line outflow in the quasar J212329.46 â° 005052.9. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	73
330	GRBâÂ \in Â f 090426: the environment of a rest-frame 0.35-s gamma-ray burst at a redshift of 2.609. Monthly Notices of the Royal Astronomical Society, 2010, 401, 963-972.	4.4	86
331	Keck telescope constraint on cosmological variation of the proton-to-electron mass ratio. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1541-1555.	4.4	89
332	Evidence for supernova-synthesized dust from the rising afterglow of GRB 071025 at zâ ¹ / ₄ 5. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2473-2487.	4.4	70
333	The nature of proximate damped Lyman α systemsã~ Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	31
334	HIGH DUST DEPLETION IN TWO INTERVENING QUASAR ABSORPTION LINE SYSTEMS WITH THE 2175 \tilde{A} EXTINCTION BUMP AT <i>z</i> \hat{a}^{1} /4 1.4. Astrophysical Journal, 2010, 724, 1325-1335.	4.5	16
335	UNDERSTANDING PHYSICAL CONDITIONS IN HIGH-REDSHIFT GALAXIES THROUGH C I FINE STRUCTURE LINES: DATA AND METHODOLOGY. Astrophysical Journal, 2010, 722, 460-490.	4.5	53
336	GALAXIES PROBING GALAXIES: COOL HALO GAS FROM A $<$ i>z $<$ /i>= 0.47 POST-STARBURST GALAXY. Astrophysical Journal, 2010, 712, 574-584.	4.5	47
337	NEW OBSERVATIONS OF THE VERY LUMINOUS SUPERNOVA 2006gy: EVIDENCE FOR ECHOES. Astronomical Journal, 2010, 139, 2218-2229.	4.7	40
338	H <scp>I</scp> Column Densities, Metallicities, and Dust Extinction of Metal-Strong Damped Lyl± Systems1. Publications of the Astronomical Society of the Pacific, 2010, 122, 619-635.	3.1	39
339	DUST EXTINCTION IN HIGH- <i>z</i> GALAXIES WITH GAMMA-RAY BURST AFTERGLOW SPECTROSCOPY: THE 2175 Ã FEATURE AT <i>z</i> = 2.45. Astrophysical Journal, 2009, 697, 1725-1740.	4.5	130
340	THE CONNECTION BETWEEN A LYMAN LIMIT SYSTEM, A VERY STRONG O VI ABSORBER, AND GALAXIES AT <i>z</i> early a $^{1}/_{4}$ 0.203. Astrophysical Journal, 2009, 694, 734-750.	4.5	46
341	MOLECULAR HYDROGEN DEFICIENCY IN H I-POOR GALAXIES AND ITS IMPLICATIONS FOR STAR FORMATION. Astrophysical Journal, 2009, 697, 1811-1821.	4.5	101
342	ON THE ABSENCE OF HIGH METALLICITY-HIGH COLUMN DENSITY DAMPED Lyα SYSTEMS: MOLECULE FORMATION IN A TWO-PHASE INTERSTELLAR MEDIUM. Astrophysical Journal, 2009, 701, L12-L15.	4.5	36

#	Article	IF	CITATIONS
343	DIRECT EVIDENCE OF COLD GAS IN DLA 0812+32B. Astrophysical Journal, 2009, 704, 247-254.	4.5	39
344	GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION. Astrophysical Journal, 2009, 696, 1871-1885.	4.5	167
345	THE DISCOVERY OF VIBRATIONALLY EXCITED H ₂ IN THE MOLECULAR CLOUD NEAR GRB 080607. Astrophysical Journal, 2009, 701, L63-L67.	4.5	33
346	FROM SHOCK BREAKOUT TO PEAK AND BEYOND: EXTENSIVE PANCHROMATIC OBSERVATIONS OF THE TYPE Ib SUPERNOVA 2008D ASSOCIATED WITH VIFT I>X-RAY TRANSIENT 080109. Astrophysical Journal, 2009, 702, 226-248.	4.5	216
347	CASTING LIGHT ON THE "ANOMALOUS―STATISTICS OF Mg II ABSORBERS TOWARD GAMMA-RAY BURST AFTERGLOWS: THE INCIDENCE OF WEAK SYSTEMS. Astrophysical Journal, 2009, 706, 1309-1315.	4.5	24
348	THE FIRST POSITIVE DETECTION OF MOLECULAR GAS IN A GRB HOST GALAXY. Astrophysical Journal, 2009, 691, L27-L32.	4.5	154
349	A DIRECT MEASUREMENT OF THE INTERGALACTIC MEDIUM OPACITY TO H I IONIZING PHOTONS. Astrophysical Journal, 2009, 705, L113-L117.	4.5	122
350	Metal-enriched plasma in protogalactic halos. Astronomy and Astrophysics, 2009, 503, 731-746.	5.1	34
351	AN IMAGING AND SPECTROSCOPIC STUDY OF FOUR STRONG Mg II ABSORBERS REVEALED BY GRB 060418. Astrophysical Journal, 2009, 701, 1605-1615.	4.5	17
352	QUASARS PROBING QUASARS. III. NEW CLUES TO FEEDBACK, QUENCHING, AND THE PHYSICS OF MASSIVE GALAXY FORMATION. Astrophysical Journal, 2009, 690, 1558-1584.	4.5	104
353	AN OBSERVATIONAL DETERMINATION OF THE PROTON TO ELECTRON MASS RATIO IN THE EARLY UNIVERSE. Astrophysical Journal, 2009, 703, 1648-1662.	4.5	53
354	THE HOST GALAXIES OF (i) SWIFT (i) DARK GAMMA-RAY BURSTS: OBSERVATIONAL CONSTRAINTS ON HIGHLY OBSCURED AND VERY HIGH REDSHIFT GRBs. Astronomical Journal, 2009, 138, 1690-1708.	4.7	163
355	LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE <i>SWIFT</i> SAMPLE AND CHARACTERIZATION OF THE ABSORBERS. Astrophysical Journal, Supplement Series, 2009, 185, 526-573.	7.7	295
356	Metal-line system survey: characterizing the low-redshift IGM. Astrophysics and Space Science, 2009, 320, 31-34.	1.4	0
357	A search for Hâ€fi 21â€fcm absorption in strong Mgâ€fii absorbers in the redshift desert. Monthly Notices of the Royal Astronomical Society, 2009, 396, 385-401.	4.4	56
358	Multiwavelength observations of the energetic GRB 080810: detailed mapping of the broad-band spectral evolution. Monthly Notices of the Royal Astronomical Society, 2009, 400, 134-146.	4.4	44
359	Strong z â^¼ 0.5 O vi absorption towards PKS 0405â°'123: implications for ionization and metallicity of the Cosmic Web ^{â~} . Monthly Notices of the Royal Astronomical Society, 2009, 396, 1875-1894.	4.4	38
360	A survey of ultraviolet-bright sources behind the halo of M31. Monthly Notices of the Royal Astronomical Society, 2009, 399, 728-736.	4.4	2

#	Article	lF	CITATIONS
361	MASE: A New Data-Reduction Pipeline for the Magellan Echellette Spectrograph. Publications of the Astronomical Society of the Pacific, 2009, 121, 1409-1418.	3.1	96
362	OBSERVATIONS OF THE NAKED-EYE GRB 080319B: IMPLICATIONS OF NATURE'S BRIGHTEST EXPLOSION. Astrophysical Journal, 2009, 691, 723-737.	4.5	133
363	ON THE (NON)EVOLUTION OF H I GAS IN GALAXIES OVER COSMIC TIME. Astrophysical Journal, 2009, 696, 1543-1547.	4.5	280
364	A $\langle i \rangle z \langle i \rangle = 3$ Lyα BLOB ASSOCIATED WITH A DAMPED Lyα SYSTEM PROXIMATE TO ITS BACKGROUND QUASAI Astrophysical Journal, 2009, 693, L49-L55.	R. 4.5	49
365	Emergence of a quasar outflow. Monthly Notices of the Royal Astronomical Society: Letters, 2008, 391, L39-L43.	3.3	12
366	Probing feedback in protogalaxies: multiphase gas in a DLA at $z>a%^2.4$. Monthly Notices of the Royal Astronomical Society, 2008, 390, 2-20.	4.4	22
367	GRB 071003: Broadband Followâ€up Observations of a Very Bright Gammaâ€Ray Burst in a Galactic Halo. Astrophysical Journal, 2008, 688, 470-490.	4.5	58
368	Reconciling the Metallicity Distributions of Gamma-ray Burst, Damped Lyman- \hat{l}_{\pm} , and Lyman-break Galaxies atzâ‰^ 3. Proceedings of the International Astronomical Union, 2008, 4, 41-48.	0.0	1
369	Large Excess of Heavy Nitrogen in Both Hydrogen Cyanide and Cyanogen from Comet 17P/Holmes. Astrophysical Journal, 2008, 679, L49-L52.	4.5	106
370	The Troublesome Broadband Evolution of GRB 061126: Does a Gray Burst Imply Gray Dust?. Astrophysical Journal, 2008, 672, 449-464.	4.5	103
371	The color excess of quasars with intervening DLA systems. Astronomy and Astrophysics, 2008, 478, 701-715.	5.1	53
372	Reconciling the Metallicity Distributions of Gammaâ€Ray Burst, Damped Lyα, and Lyman Break Galaxies at <i>z</i> à‰^ 3. Astrophysical Journal, 2008, 683, 321-328.	4.5	136
373	Comprehensive Abundance Measurements in Damped Lyl± Systems. , 2008, , 69-72.		O
374	A Putative Earlyâ€Type Host Galaxy for GRB 060502B: Implications for the Progenitors of Shortâ€Duration Hardâ€Spectrum Bursts. Astrophysical Journal, 2007, 654, 878-884.	4.5	68
375	The Interstellar Medium of Gammaâ€Ray Burst Host Galaxies. I. Echelle Spectra of Swift GRB Afterglows. Astrophysical Journal, Supplement Series, 2007, 168, 231-267.	7.7	64
376	A new comprehensive set of elemental abundances in DLAs. Astronomy and Astrophysics, 2007, 470, 431-448.	5.1	46
377	A new comprehensive set of elemental abundances in DLAs. Astronomy and Astrophysics, 2006, 445, 93-113.	5.1	86
378	Closing in on a Shortâ∈Hard Burst Progenitor: Constraints from Earlyâ∈Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b. Astrophysical Journal, 2006, 638, 354-368.	4.5	258

#	Article	IF	Citations
379	The Galaxy Hosts and Largeâ€Scale Environments of Shortâ€Hard Gammaâ€Ray Bursts. Astrophysical Journal, 2006, 642, 989-994.	4.5	99
380	GRB 050408: A Bright Gammaâ€Ray Burst Probing an Atypical Galactic Environment. Astrophysical Journal, 2006, 645, 450-463.	4.5	22
381	When Do Internal Shocks End and External Shocks Begin? Earlyâ€Time Broadband Modeling of GRB 051111. Astrophysical Journal, 2006, 652, 1390-1399.	4.5	31
382	Hypernova Signatures in the Late Rebrightening of GRB 050525A. Astrophysical Journal, 2006, 642, L103-L106.	4.5	82
383	High-metallicity, photoionized gas in intergalactic large-scale filaments. Monthly Notices of the Royal Astronomical Society, 2006, 367, 139-155.	4.4	39
384	Constraints on the Diverse Progenitors of GRBs from the Large-Scale Environments. AIP Conference Proceedings, 2006, , .	0.4	11
385	Detection of the 2175 \tilde{A} dust feature from The Sloan Digital Sky Survey first and second data releases. Proceedings of the International Astronomical Union, 2005, 1, 331-336.	0.0	0
386	An infrared flash contemporaneous with the \hat{I}^3 -rays of GRB 041219a. Nature, 2005, 435, 181-184.	27.8	95
387	A comprehensive set of elemental abundances in damped Lyl±systems: Revealing the nature of these high-redshift galaxies. Astronomy and Astrophysics, 2004, 416, 79-110.	5.1	77
388	Damped Lyman alpha systems and galaxy formation models - II. High ions and Lyman-limit systems. Monthly Notices of the Royal Astronomical Society, 2003, 343, 268-278.	4.4	34
389	New detections of Mn, Ti and Mg in damped Lyl±systems: Toward reconciling the dust/nucleosynthesis degeneracy. Astronomy and Astrophysics, 2002, 391, 801-807.	5.1	32
390	Metal abundances and ionization conditions in a possibly dust-free damped Lyl±â€€system at \$mathsf{vec{z}=2.3}\$. Astronomy and Astrophysics, 2002, 385, 778-792.	5.1	66
391	Further Evidence for Cosmological Evolution of the Fine Structure Constant. Physical Review Letters, 2001, 87, 091301.	7.8	663
392	Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results. Monthly Notices of the Royal Astronomical Society, 2001, 327, 1208-1222.	4.4	290
393	Possible evidence for a variable fine-structure constant from QSO absorption lines: systematic errors. Monthly Notices of the Royal Astronomical Society, 2001, 327, 1223-1236.	4.4	107
394	Further constraints on variation of the fine-structure constant from alkali-doublet QSO absorption lines. Monthly Notices of the Royal Astronomical Society, 2001, 327, 1237-1243.	4.4	114
395	Damped Lya systems at high redshift and models of protogalactic discs. Monthly Notices of the Royal Astronomical Society, 1998, 296, 430-436.	4.4	22
396	Directly imaging damped Lyman α galaxies at zâ€f>â€f2 - I. Methodology and first resultsâ~ Monthly Notic of the Royal Astronomical Society, 0, 408, 362-382.	:es 4.4	33

#	Article	IF	CITATIONS
397	Enhancement of $\hat{HA} < \frac{1}{scp} > \frac{1}{scp} > absorption$ associated with the $\frac{1}{z} < \frac{1}{i} = 3.1$ large-scale proto-cluster and characteristic structures with AGNs sculptured over Gpc scale in the SSA22 field. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	6
398	Probing Galactic Halos with Fast Radio Bursts. Monthly Notices of the Royal Astronomical Society, 0,	4.4	123
399	MUSE searches for galaxies near very metal-poor gas clouds at z $\hat{a}^{-1}/4$ 3: new constraints for cold accretion models. , 0, .		1