Jung Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/609840/publications.pdf

Version: 2024-02-01

394421 377865 2,016 36 19 34 h-index citations g-index papers 37 37 37 3966 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel MAPK/AKT-impairing germline NRAS variant identified in a melanoma-prone family. Familial Cancer, 2022, 21, 347-355.	1.9	1
2	Rare germline deleterious variants increase susceptibility for lung cancer. Human Molecular Genetics, 2022, 31, 3558-3565.	2.9	5
3	A Genome-First Approach to Estimate Prevalence of Germline Pathogenic Variants and Risk of Pancreatic Cancer in Select Cancer Susceptibility Genes. Cancers, 2022, 14, 3257.	3.7	6
4	Endemic Burkitt Lymphoma in second-degree relatives in Northern Uganda: in-depth genome-wide analysis suggests clues about genetic susceptibility. Leukemia, 2021, 35, 1209-1213.	7.2	5
5	Pathogenic Germline Variants in Cancer Susceptibility Genes in Children and Young Adults With Rhabdomyosarcoma. JCO Precision Oncology, 2021, 5, 75-87.	3.0	27
6	Frequency of Pathogenic Germline Variants in Cancer-Susceptibility Genes in the Childhood Cancer Survivor Study. JNCI Cancer Spectrum, 2021, 5, pkab007.	2.9	11
7	A Genome-First Approach to Characterize <i>DICER1</i> Pathogenic Variant Prevalence, Penetrance, and Phenotype. JAMA Network Open, 2021, 4, e210112.	5.9	25
8	Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. Science Advances, 2021, 7, .	10.3	37
9	Unusual phenotypes in patients with a pathogenic germline variant in DICER1. Familial Cancer, 2021, , $1.$	1.9	5
10	Genomic and evolutionary classification of lung cancer in never smokers. Nature Genetics, 2021, 53, 1348-1359.	21.4	81
11	Whole Exome Sequencing in Severe Aplastic Anemia Identifies Unrecognized Inherited Subset with Inferior Survival after Hematopoietic Cell Transplant. Blood, 2021, 138, 605-605.	1.4	O
12	Identification of Genetic Risk Factors for Familial Urinary Bladder Cancer: An Exome Sequencing Study. JCO Precision Oncology, 2021, 5, 1830-1839.	3.0	3
13	Lack of pathogenic germline DICER1 variants in males with testicular germ-cell tumors. Cancer Genetics, 2020, 248-249, 49-56.	0.4	O
14	Population Frequency of Fanconi Pathway Gene Variants and Their Association with Survival After Hematopoietic Cell Transplantation for Severe Aplastic Anemia. Biology of Blood and Marrow Transplantation, 2020, 26, 817-822.	2.0	6
15	In search of genetic factors predisposing to familial hairy cell leukemia (HCL): exome-sequencing of four multiplex HCL pedigrees. Leukemia, 2020, 34, 1934-1938.	7.2	3
16	Altered chromatin recruitment by FOXA1 mutations promotes androgen independence and prostate cancer progression. Cell Research, 2019, 29, 773-775.	12.0	20
17	The prevalence of germline <i>DICER1</i> pathogenic variation in cancer populations. Molecular Genetics & Samp; Genomic Medicine, 2019, 7, e555.	1.2	24
18	Response to: Concern regarding classification of germline TP53 variants as likely pathogenic. Human Mutation, 2019, 40, 832-833.	2.5	1

#	Article	IF	Citations
19	Activation of MAPK Signaling by CXCR7 Leads to Enzalutamide Resistance in Prostate Cancer. Cancer Research, 2019, 79, 2580-2592.	0.9	85
20	Variable population prevalence estimates of germline <i>TP53</i> variants: A gnomAD-based analysis. Human Mutation, 2019, 40, 97-105.	2.5	66
21	Prevalence of pathogenic/likely pathogenic variants in the 24 cancer genes of the ACMG Secondary Findings v2.0 list in a large cancer cohort and ethnicity-matched controls. Genome Medicine, 2018, 10, 99.	8.2	15
22	Polycomb- and Methylation-Independent Roles of EZH2 as a Transcription Activator. Cell Reports, 2018, 25, 2808-2820.e4.	6.4	201
23	CD95/Fas Increases Stemness in Cancer Cells by Inducing a STAT1-Dependent Type I Interferon Response. Cell Reports, 2017, 18, 2373-2386.	6.4	81
24	FOXA1 inhibits prostate cancer neuroendocrine differentiation. Oncogene, 2017, 36, 4072-4080.	5.9	101
25	The prevalence of <i>DICER1</i> pathogenic variation in population databases. International Journal of Cancer, 2017, 141, 2030-2036.	5.1	75
26	Polycomb-Mediated Disruption of an Androgen Receptor Feedback Loop Drives Castration-Resistant Prostate Cancer. Cancer Research, 2017, 77, 412-422.	0.9	23
27	FOXA1 potentiates lineage-specific enhancer activation through modulating TET1 expression and function. Nucleic Acids Research, 2016, 44, 8153-8164.	14.5	53
28	FOXA1 acts upstream of GATA2 and AR in hormonal regulation of gene expression. Oncogene, 2016, 35, 4335-4344.	5.9	55
29	LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene, 2016, 35, 2746-2755.	5.9	359
30	LncRNA HOTAIR Enhances the Androgen-Receptor-Mediated Transcriptional Program and Drives Castration-Resistant Prostate Cancer. Cell Reports, 2015, 13, 209-221.	6.4	291
31	Influence of oncogenic transcription factors on chromatin conformation and implications in prostate cancer. The Application of Clinical Genetics, 2014, 7, 81.	3.0	3
32	TMPRSS2–ERG gene fusions induce prostate tumorigenesis by modulating microRNA miR-200c. Oncogene, 2014, 33, 5183-5192.	5.9	43
33	Cooperativity and equilibrium with FOXA1 define the androgen receptor transcriptional program. Nature Communications, 2014, 5, 3972.	12.8	147
34	ERG Is a Critical Regulator of Wnt/LEF1 Signaling in Prostate Cancer. Cancer Research, 2013, 73, 6068-6079.	0.9	81
35	Androgen receptor genomic regulation. Translational Andrology and Urology, 2013, 2, 157-177.	1.4	63
36	Interrogating genomic and epigenomic data to understand prostate cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1825, 186-196.	7.4	14