
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/609713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Broad Review of Soybean Research on the Ongoing Race to Overcome Soybean Cyst Nematode. Biology, 2022, 11, 211.	2.8	8
2	Ethnobotany and ethnopharmacology in the Americas. Botany, 2022, 100, ν-ν.	1.0	0
3	Discovery and identification of genes involved in DNA damage repair in yeast. Gene, 2022, , 146549.	2.2	2
4	Lithium chloride sensitivity connects the activity of PEX11 and RIM20 to the translation of PGM2 and other mRNAs with structured 5'-UTRs. Molecular and Cellular Biochemistry, 2022, 477, 2643-2656.	3.1	3
5	Soil invertebrate toxicity and bioaccumulation of nano copper oxide and copper sulphate in soils, with and without biosolids amendment. Ecotoxicology and Environmental Safety, 2021, 217, 112222.	6.0	11
6	Propionic acid disrupts endocytosis, cell cycle, and cellular respiration in yeast. BMC Research Notes, 2021, 14, 335.	1.4	4
7	A metabolomic study of vegetative incompatibility in Cryphonectria parasitica. Fungal Genetics and Biology, 2021, 157, 103633.	2.1	3
8	Transcriptome analysis implicates secondary metabolite production, redox reactions, and programmed cell death during allorecognition in <i>Cryphonectria parasitica</i> . G3: Genes, Genomes, Genetics, 2021, 11, 1-13.	1.8	4
9	Mode of action of nisin on Escherichia coli. Canadian Journal of Microbiology, 2020, 66, 161-168.	1.7	8
10	Draft genome assembly and annotation of the masked birch caterpillar, Drepana arcuata (Lepidoptera:) Tj ETQq0	0 0 rgBT	Overlock 10

11	Lithium Chloride Sensitivity in Yeast and Regulation of Translation. International Journal of Molecular Sciences, 2020, 21, 5730.	4.1	8
12	Transcriptome analysis of a social caterpillar, Drepana arcuata: De novo assembly, functional annotation and developmental analysis. PLoS ONE, 2020, 15, e0234903.	2.5	9
13	Genome Sequence of the Chestnut Blight Fungus <i>Cryphonectria parasitica</i> EP155: A Fundamental Resource for an Archetypical Invasive Plant Pathogen. Phytopathology, 2020, 110, 1180-1188.	2.2	34
14	Volatile organic compounds kill the white-nose syndrome fungus, <i>Pseudogymnoascus destructans</i> , in hibernaculum sediment. Canadian Journal of Microbiology, 2020, 66, 593-599.	1.7	10
15	Sensitivity of yeast to lithium chloride connects the activity of YTA6 and YPR096C to translation of structured mRNAs. PLoS ONE, 2020, 15, e0235033.	2.5	9
16	Title is missing!. , 2020, 15, e0235033.		0
17	Title is missing!. , 2020, 15, e0235033.		0

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 15, e0235033.		0
20	Title is missing!. , 2020, 15, e0235033.		0
21	Title is missing!. , 2020, 15, e0235033.		0
22	Title is missing!. , 2020, 15, e0235033.		0
23	Title is missing!. , 2020, 15, e0235033.		0
24	Genomic Identification of the TOR Signaling Pathway as a Target of the Plant Alkaloid Antofine in the Phytopathogen Fusarium graminearum. MBio, 2019, 10, .	4.1	10
25	Balancing selection at nonself recognition loci in the chestnut blight fungus, Cryphonectria parasitica, demonstrated by trans-species polymorphisms, positive selection, and even allele frequencies. Heredity, 2018, 121, 511-523.	2.6	14
26	Clonal evolution and genome stability in a 2500-year-old fungal individual. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182233.	2.6	39
27	<i>Echinacea</i> biotechnology: advances, commercialization and future considerations. Pharmaceutical Biology, 2018, 56, 485-494.	2.9	29
28	Zinc oxide and silver nanoparticles toxicity in the baker's yeast, Saccharomyces cerevisiae. PLoS ONE, 2018, 13, e0193111.	2.5	42
29	Microbial inhibitors of the fungus Pseudogymnoascus destructans, the causal agent of white-nose syndrome in bats. PLoS ONE, 2017, 12, e0179770.	2.5	27
30	The sensitivity of the yeast, <i>Saccharomyces cerevisiae</i> , to acetic acid is influenced by <i>DOM34</i> and <i>RPL36A</i> . PeerJ, 2017, 5, e4037.	2.0	15
31	Antifungal Saponins from the Maya Medicinal Plant <i>Cestrum schlechtendahlii</i> G. Don (Solanaceae). Phytotherapy Research, 2016, 30, 439-446.	5.8	13
32	Genetic evidence for mixed broods and extra-pair matings in a socially monogamous biparental cichlidÂfish. Behaviour, 2015, 152, 1507-1526.	0.8	11
33	Antimicrobial activities of Marcgraviaceae species and isolation of a naphthoquinone from <i>Marcgravia nervosa</i> (Marcgraviaceae). Botany, 2015, 93, 413-424.	1.0	1
34	Metabolism ofn-C10:0andn-C11:0fatty acids byTrichoderma koningii,Penicillium janthinellumand their mixed culture: I. Biomass and CO2production, and allocation of intracellular lipids. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49, 945-954.	1.5	3
35	Metabolism ofnC11fatty acid fed toTrichoderma koningiiandPenicillium janthinellumII: Production of intracellular and extracellular lipids. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49, 955-965.	1.5	3
36	Experimental evolution of bet hedging under manipulated environmental uncertainty in <i>Neurospora crassa</i> . Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140706.	2.6	55

#	Article	IF	CITATIONS
37	A global investigation of gene deletion strains that affect premature stop codon bypass in yeast, Saccharomyces cerevisiae. Molecular BioSystems, 2014, 10, 916-924.	2.9	27
38	Elimination of Bioweapons Agents from Forensic Samples During Extraction of Human DNA. Journal of Forensic Sciences, 2014, 59, 1530-1540.	1.6	4
39	Alkamides from Echinacea disrupt the fungal cell wall-membrane complex. Phytomedicine, 2014, 21, 435-442.	5.3	18
40	Disruption of protein synthesis as antifungal mode of action by chitosan. International Journal of Food Microbiology, 2013, 164, 108-112.	4.7	82
41	Nonself Recognition Through Intermolecular Disulfide Bond Formation of Ribonucleotide Reductase in Neurospora. Genetics, 2013, 193, 1175-1183.	2.9	3
42	Trans-species activity of a nonself recognition domain. BMC Microbiology, 2013, 13, 63.	3.3	2
43	Thymol antifungal mode of action involves telomerase inhibition. Medical Mycology, 2013, 51, 826-834.	0.7	22
44	Large-scale investigation of oxygen response mutants in Saccharomyces cerevisiae. Molecular BioSystems, 2013, 9, 1351.	2.9	24
45	The Antifungal Eugenol Perturbs Dual Aromatic and Branched-Chain Amino Acid Permeases in the Cytoplasmic Membrane of Yeast. PLoS ONE, 2013, 8, e76028.	2.5	58
46	Molecular Characterization of Vegetative Incompatibility Genes That Restrict Hypovirus Transmission in the Chestnut Blight Fungus <i>Cryphonectria parasitica</i> . Genetics, 2012, 190, 113-127.	2.9	128
47	Diverse interactions mediate asymmetric incompatibility by the het-6 supergene complex in Neurospora crassa. Fungal Genetics and Biology, 2012, 49, 65-73.	2.1	12
48	Vibration detection and discrimination in the masked birch caterpillar (Drepana arcuata). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2012, 198, 325-335.	1.6	30
49	Characterization of Human Antigenic Proteins SchS21 and SchS34 from Stachybotrys chartarum. International Archives of Allergy and Immunology, 2011, 155, 74-85.	2.1	17
50	Polymorphic microsatellite loci optimised for studies on the convict cichlid fish (Amatitlania siquia). Environmental Biology of Fishes, 2011, 92, 261-266.	1.0	11
51	The evolutionary origins of ritualized acoustic signals in caterpillars. Nature Communications, 2010, 1, 4.	12.8	58
52	Remediating Office Environments of Spore-Forming Bacteria. Journal of Occupational and Environmental Hygiene, 2010, 7, 585-592.	1.0	10
53	Disruption of fungal cell wall by antifungal <i>Echinacea</i> extracts. Medical Mycology, 2010, 48, 949-958.	0.7	18
54	Grunting for worms: seismic vibrations cause <i>Diplocardia</i> earthworms to emerge from the soil. Biology Letters, 2009, 5, 16-19.	2.3	35

#	Article	IF	CITATIONS
55	Identification and application of AFLP-derived genetic markers for quantitative PCR-based tracking of <i>Bacillus</i> and <i>Paenibacillus</i> spp. released in soil. Canadian Journal of Microbiology, 2009, 55, 1166-1175.	1.7	9
56	Realâ€ŧime fluorescenceâ€based detection of furanocoumarin photoadducts of DNA. Phytochemical Analysis, 2008, 19, 342-347.	2.4	15
57	Antifungal and antioxidant activities of the phytomedicine pipsissewa, Chimaphila umbellata. Phytochemistry, 2008, 69, 738-746.	2.9	38
58	Tests of the antibiotic properties of the invasive vine Vincetoxicum rossicum against bacteria, fungi and insects. Biochemical Systematics and Ecology, 2008, 36, 383-391.	1.3	32
59	Secondary Assays for Testing the Mode of Action of Natural Products with Bioactivity Against Fungi. Pharmaceutical Biology, 2008, 46, 16-25.	2.9	4
60	Colony size measurement of the yeast gene deletion strains for functional genomics. BMC Bioinformatics, 2007, 8, 117.	2.6	52
61	Development of AFLP-derived, functionally specific markers for environmental persistence studies of fungal strains. Canadian Journal of Microbiology, 2006, 52, 451-461.	1.7	11
62	Phytochemistry and Antifungal Properties of the Newly Discovered TreePleodendroncostaricense. Journal of Natural Products, 2006, 69, 1005-1009.	3.0	41
63	The copy-number of plasmids and other genetic elements can be determined by SYBR-Green-based quantitative real-time PCR. Journal of Microbiological Methods, 2006, 65, 476-487.	1.6	69
64	Heterokaryon incompatibility function of barrage-associated vegetative incompatibility genes (vic) inCryphonectria parasitica. Mycologia, 2006, 98, 43-50.	1.9	14
65	Heterokaryon incompatibility function of barrage-associated vegetative incompatibility genes (vic) in Cryphonectria parasitica. Mycologia, 2006, 98, 43-50.	1.9	26
66	A Nonself Recognition Gene Complex in Neurospora crassa. Genetics, 2006, 173, 1991-2004.	2.9	30
67	Modern Biological Approaches to Folk Medicines and Traditional Antifungal Therapies. International Journal of Technology, Knowledge and Society, 2006, 2, 171-180.	0.2	1
68	Antifungal constituents of Northern prickly ash, Zanthoxylum americanum Mill Phytomedicine, 2005, 12, 370-377.	5.3	33
69	Inhibition of DNA Polymerization and Antifungal Specificity of Furanocoumarins Present in Traditional Medicines¶. Photochemistry and Photobiology, 2004, 79, 506.	2.5	17
70	Determining the environmental fate of a filamentous fungus,Trichoderma reesei, in laboratory-contained intact soil-core microcosms using competitive PCR and viability plating. Canadian Journal of Microbiology, 2004, 50, 623-631.	1.7	18
71	Inhibition of DNA Polymerization and Antifungal Specificity of Furanocoumarins Present in Traditional Medicines [¶] . Photochemistry and Photobiology, 2004, 79, 506-510.	2.5	0
72	Differentiation between subpopulations of a polychromatic damselfly with respect to morph frequencies, but not neutral genetic markers. Molecular Ecology, 2003, 12, 3505-3513.	3.9	31

#	Article	IF	CITATIONS
73	Inhibition of human pathogenic fungi by members of Zingiberaceae used by the Kenyah (Indonesian) Tj ETQq 1	l 0.784314 4.1	1 rgBT /Overld
74	On the independence of barrage formation and heterokaryon incompatibility in Neurospora crassa. Fungal Genetics and Biology, 2003, 38, 209-219.	2.1	32
75	Programmed cell death correlates with virus transmission in a filamentous fungus. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2269-2276.	2.6	126
76	Isolation of an antimicrobial compound fromImpatiens balsamina L. using bioassay-guided fractionation. Phytotherapy Research, 2001, 15, 676-680.	5.8	80
77	Caterpillar talk: Acoustically mediated territoriality in larval Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11371-11375.	7.1	75
78	Light-Mediated Antifungal Activity of Echinacea Extracts. Planta Medica, 2000, 66, 241-244.	1.3	59
79	Molecular and Functional Analyses of Incompatibility Genes at het-6 in a Population of Neurospora crassa. Fungal Genetics and Biology, 2000, 30, 197-205.	2.1	32
80	Antimicrobial activity of extracts of eastern North American hardwood trees and relation to traditional medicine. Journal of Ethnopharmacology, 2000, 73, 161-170.	4.1	72
81	Antifungal activity of extracts from medicinal plants used by First Nations Peoples of eastern Canada. Journal of Ethnopharmacology, 2000, 73, 191-198.	4.1	66
82	The Product of the <i>het-C</i> Heterokaryon Incompatibility Gene of <i>Neurospora crassa</i> Has Characteristics of a Glycine-Rich Cell Wall Protein. Genetics, 1996, 143, 1589-1600.	2.9	81
83	Escape From het-6 Incompatibility in Neurospora crassa Partial Diploids Involves Preferential Deletion Within the Ectopic Segment. Genetics, 1996, 144, 523-531.	2.9	33
84	Mapping translocation breakpoints by orthogonal field agarose-gel electrophoresis. Current Genetics, 1996, 29, 301-305.	1.7	0
85	Genetic exchange between diploid and haploid mycelia of Armillaria gallica. Mycological Research, 1995, 99, 641-647.	2.5	36
86	Mitochondrial DNAs of the fungus Armillaria ostoyae: restriction map and length variation. Current Genetics, 1994, 25, 545-553.	1.7	14
87	Structure and function of a mating-type gene from the homothallic species Neurospora africana. Molecular Genetics and Genomics, 1994, 244, 401-409.	2.4	83
88	Molecular characterization of mating-type loci in selected homothallic species of Neurospora, Gelasinospora and Anixiella. Mycological Research, 1994, 98, 1309-1316.	2.5	50
89	The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature, 1992, 356, 428-431.	27.8	612
90	Restriction fragment length polymorphisms in mitochondrial DNAs of Armillaria: identification of North American biological species. Mycological Research, 1989, 93, 247-256.	2.5	83

#	Article	IF	CITATIONS
91	Restriction Fragment Polymorphisms in Biological Species of Armillaria mellea. Mycologia, 1987, 79, 69.	1.9	55
92	Restriction Fragment Polymorphisms in Biological Species of Armillaria Mellea. Mycologia, 1987, 79, 69-76.	1.9	92