
Joanna L Kelley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6095516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathways to polar adaptation in fishes revealed by longâ€read sequencing. Molecular Ecology, 2023, 32, 1381-1397.	3.9	8
2	Impacts of heavy metal pollution on the ionomes and transcriptomes of Western mosquitofish (<i>Gambusia affinis</i>). Molecular Ecology, 2022, 31, 1527-1542.	3.9	8
3	Editorial 2022. Molecular Ecology Resources, 2022, 22, 1-8.	4.8	1
4	Long-read isoform sequencing reveals tissue-specific isoform expression between active and hibernating brown bears (<i>Ursus arctos</i>). G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	7
5	Recovering the genomes hidden in museum wet collections. Molecular Ecology Resources, 2022, , .	4.8	4
6	microRNA expression variation as a potential molecular mechanism contributing to adaptation to hydrogen sulphide. Journal of Evolutionary Biology, 2021, 34, 977-988.	1.7	19
7	Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107.	3.9	19
8	Editorial 2021. Molecular Ecology Resources, 2021, 21, 1-10.	4.8	1
9	The changing face of genome assemblies: Guidance on achieving highâ€quality reference genomes. Molecular Ecology Resources, 2021, 21, 641-652.	4.8	44
10	Cold Tolerance of Mountain Stoneflies (Plecoptera: Nemouridae) from the High Rocky Mountains. Western North American Naturalist, 2021, 81, .	0.4	6
11	Big Data in Conservation Genomics: Boosting Skills, Hedging Bets, and Staying Current in the Field. Journal of Heredity, 2021, 112, 313-327.	2.4	10
12	Can offsetting the energetic cost of hibernation restore an active season phenotype in grizzly bears (<i>Ursus arctos horribilis</i>)?. Journal of Experimental Biology, 2021, 224, .	1.7	8
13	Long Reads Are Revolutionizing 20 Years of Insect Genome Sequencing. Genome Biology and Evolution, 2021, 13, .	2.5	75
14	Epigenetic inheritance of DNA methylation changes in fish living in hydrogen sulfide–rich springs. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
15	Biological albedo reduction on ice sheets, glaciers, and snowfields. Earth-Science Reviews, 2021, 220, 103728.	9.1	30
16	The biogeographic history of eelpouts and related fishes: Linking phylogeny, environmental change, and patterns of dispersal in a globally distributed fish group. Molecular Phylogenetics and Evolution, 2021, 162, 107211.	2.7	5
17	The Impacts of Dam Construction and Removal on the Genetics of Recovering Steelhead (Oncorhynchus mykiss) Populations across the Elwha River Watershed. Genes, 2021, 12, 89.	2.4	24
18	Toward a genome sequence for every animal: Where are we now?. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	87

JOANNA L KELLEY

#	Article	IF	CITATIONS
19	Editorial 2020. Molecular Ecology Resources, 2020, 20, 1-7.	4.8	9
20	Macroinvertebrates on glaciers: a key resource for terrestrial food webs?. Ecology, 2020, 101, e02947.	3.2	13
21	Aquatic Insects Are Dramatically Underrepresented in Genomic Research. Insects, 2020, 11, 601.	2.2	35
22	Host plants and <i>Wolbachia</i> shape the population genetics of sympatric herbivore populations. Evolutionary Applications, 2020, 13, 2740-2753.	3.1	13
23	Mountain stoneflies may tolerate warming streams: Evidence from organismal physiology and gene expression. Global Change Biology, 2020, 26, 5524-5538.	9.5	16
24	Convergent evolution of conserved mitochondrial pathways underlies repeated adaptation to extreme environments. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16424-16430.	7.1	44
25	Effective study design for comparative functional genomics. Nature Reviews Genetics, 2020, 21, 385-386.	16.3	9
26	Disease swamps molecular signatures of geneticâ€environmental associations to abiotic factors in Tasmanian devil (<i>Sarcophilus harrisii</i>) populations. Evolution; International Journal of Organic Evolution, 2020, 74, 1392-1408.	2.3	18
27	Bacterial Diversity in Replicated Hydrogen Sulfide-Rich Streams. Microbial Ecology, 2019, 77, 559-573.	2.8	12
28	Nuclear and mitochondrial genomic resources for the meltwater stonefly (Plecoptera:) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5 0.9	50 382 Td (Ne
29	Long-distance dispersal, ice sheet dynamics and mountaintop isolation underlie the genetic structure of glacier ice worms. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190983.	2.6	17
30	Expression analyses of cave mollies (Poecilia mexicana) reveal key genes involved in the early evolution of eye regression. Biology Letters, 2019, 15, 20190554.	2.3	14
31	Hibernation induces widespread transcriptional remodeling in metabolic tissues of the grizzly bear. Communications Biology, 2019, 2, 336.	4.4	61
32	Local ancestry analysis reveals genomic convergence in extremophile fishes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180240.	4.0	18
33	The rising tide of highâ€quality genomic resources. Molecular Ecology Resources, 2019, 19, 567-569.	4.8	11
34	Transcriptomics of Tasmanian Devil (Sarcophilus Harrisii) Ear Tissue Reveals Homogeneous Gene Expression Patterns across a Heterogeneous Landscape. Genes, 2019, 10, 801.	2.4	6
35	Extreme environments and the origins of biodiversity: Adaptation and speciation in sulphide spring fishes. Molecular Ecology, 2018, 27, 843-859.	3.9	56
36	Whole-genome sequencing reveals the extent of heterozygosity in a preferentially self-fertilizing hermaphroditic vertebrate. Genome, 2018, 61, 241-247.	2.0	15

#	Article	IF	CITATIONS
37	Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs. Genome, 2018, 61, 273-286.	2.0	18
38	Concordant changes in gene expression and nucleotides underlie independent adaptation to hydrogen-sulfide-rich environments. Genome Biology and Evolution, 2018, 10, 2867-2881.	2.5	14
39	How to measure natural selection. Methods in Ecology and Evolution, 2017, 8, 660-662.	5.2	2
40	Complexities of gene expression patterns in natural populations of an extremophile fish (<i>Poecilia) Tj ETQq0 (</i>	0 rgBT /C	iverlock 10 Tf
41	Responsible <scp>RAD</scp> : Striving for best practices in population genomic studies of adaptation. Molecular Ecology Resources, 2017, 17, 366-369.	4.8	58
42	The roles of plasticity and evolutionary change in shaping gene expression variation in natural populations of extremophile fish. Molecular Ecology, 2017, 26, 6384-6399.	3.9	33
43	Genomeâ€scale data reveal that endemic Poecilia populations from small sulphidic springs display no evidence of inbreeding. Molecular Ecology, 2017, 26, 4920-4934.	3.9	8
44	Sex-specific differences in transcriptome profiles of brain and muscle tissue of the tropical gar. BMC Genomics, 2017, 18, 283.	2.8	13
45	Breaking RAD: an evaluation of the utility of restriction siteâ€associated DNA sequencing for genome scans of adaptation. Molecular Ecology Resources, 2017, 17, 142-152.	4.8	322
46	Using NextRAD sequencing to infer movement of herbivores among host plants. PLoS ONE, 2017, 12, e0177742.	2.5	20
47	GBStools: A Statistical Method for Estimating Allelic Dropout in Reduced Representation Sequencing Data. PLoS Genetics, 2016, 12, e1005631.	3.5	30
48	The life aquatic: advances in marine vertebrate genomics. Nature Reviews Genetics, 2016, 17, 523-534.	16.3	69
49	Human enamel thickness and ENAM polymorphism. International Journal of Oral Science, 2016, 8, 93-97.	8.6	29
50	Mechanisms Underlying Adaptation to Life in Hydrogen Sulfide–Rich Environments. Molecular Biology and Evolution, 2016, 33, 1419-1434.	8.9	69
51	The Evolutionary Ecology of Animals Inhabiting Hydrogen Sulfide–Rich Environments. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 239-262.	8.3	54
52	The Genome of the Self-Fertilizing Mangrove Rivulus Fish, <i>Kryptolebias marmoratus</i> : A Model for Studying Phenotypic Plasticity and Adaptations to Extreme Environments. Genome Biology and Evolution, 2016, 8, 2145-2154.	2.5	38
53	Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions. American Naturalist, 2016, 188, 379-397.	2.1	663
54	Conservation genomics of natural and managed populations: building a conceptual and practical framework. Molecular Ecology, 2016, 25, 2967-2977.	3.9	141

JOANNA L KELLEY

#	Article	IF	CITATIONS
55	The Time Scale of Recombination Rate Evolution in Great Apes. Molecular Biology and Evolution, 2016, 33, 928-945.	8.9	92
56	Extreme selective sweeps independently targeted the X chromosomes of the great apes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6413-6418.	7.1	75
57	Inference of Gorilla Demographic and Selective History from Whole-Genome Sequence Data. Molecular Biology and Evolution, 2015, 32, 600-612.	8.9	55
58	Illumina TruSeq Synthetic Long-Reads Empower De Novo Assembly and Resolve Complex, Highly-Repetitive Transposable Elements. PLoS ONE, 2014, 9, e106689.	2.5	180
59	H2S exposure elicits differential expression of candidate genes in fish adapted to sulfidic and non-sulfidic environments. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2014, 175, 7-14.	1.8	33
60	Genomic inference accurately predicts the timing and severity of a recent bottleneck in a nonmodel insect population. Molecular Ecology, 2014, 23, 136-150.	3.9	40
61	Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nature Communications, 2014, 5, 4611.	12.8	128
62	Parallel evolution of cox genes in H2S-tolerant fish as key adaptation to a toxic environment. Nature Communications, 2014, 5, 3873.	12.8	75
63	Positive selection of protective variants for type 2 diabetes from the Neolithic onward: a case study in Central Asia. European Journal of Human Genetics, 2013, 21, 1146-1151.	2.8	35
64	Great ape genetic diversity and population history. Nature, 2013, 499, 471-475.	27.8	768
65	Population Genomic Analysis Reveals a Rich Speciation and Demographic History of Orang-utans (Pongo pygmaeus and Pongo abelii). PLoS ONE, 2013, 8, e77175.	2.5	23
66	Gene expression changes governing extreme dehydration tolerance in an Antarctic insect. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20744-20749.	7.1	118
67	The Possibility of De Novo Assembly of the Genome and Population Genomics of the Mangrove Rivulus, Kryptolebias marmoratus. Integrative and Comparative Biology, 2012, 52, 737-742.	2.0	11
68	Genomic resources for a model in adaptation and speciation research: characterization of the Poecilia mexicana transcriptome. BMC Genomics, 2012, 13, 652.	2.8	25
69	Systematic underestimation of the age of selected alleles. Frontiers in Genetics, 2012, 3, 165.	2.3	8
70	Association of coagulationâ€related and inflammationâ€related genes and factorÂVIIc levels with stroke: the Cardiovascular Health Study. Journal of Thrombosis and Haemostasis, 2011, 9, 267-274.	3.8	29
71	Classic Selective Sweeps Were Rare in Recent Human Evolution. Science, 2011, 331, 920-924.	12.6	432
72	Functional Diversification and Evolution of Antifreeze Proteins in the Antarctic Fish Lycodichthys dearborni. Journal of Molecular Evolution, 2010, 71, 111-118.	1.8	11

JOANNA L KELLEY

#	Article	IF	CITATIONS
73	A map of human genome variation from population-scale sequencing. Nature, 2010, 467, 1061-1073.	27.8	7,209
74	The CFTR Met 470 Allele Is Associated with Lower Birth Rates in Fertile Men from a Population Isolate. PLoS Genetics, 2010, 6, e1000974.	3.5	21
75	Targeted resequencing of two genes, RAGE and POLL, confirms findings from a genome-wide scan for adaptive evolution and provides evidence for positive selection in additional populations. Human Molecular Genetics, 2009, 18, 779-784.	2.9	7
76	Positive Selection in the Human Genome: From Genome Scans to Biological Significance. Annual Review of Genomics and Human Genetics, 2008, 9, 143-160.	6.2	74
77	Dietary Change and Adaptive Evolution of <i>enamelin</i> in Humans and Among Primates. Genetics, 2008, 178, 1595-1603.	2.9	47
78	Genomic signatures of positive selection in humans and the limits of outlier approaches. Genome Research, 2006, 16, 980-989.	5.5	188
79	Adaptive evolution in the SRZ chemoreceptor families of Caenorhabditis elegans and Caenorhabditis briggsae. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4476-4481.	7.1	76