Xuerui Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6095314/publications.pdf

Version: 2024-02-01

236925 233421 3,459 47 25 45 citations h-index g-index papers 49 49 49 6418 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	De novo Identification of Actively Translated Open Reading Frames with Ribosome Profiling Data. Journal of Visualized Experiments, 2022, , .	0.3	1
2	De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc. Genome Biology, 2022, 23 , .	8.8	10
3	Ultrasensitive Ribo-seq reveals translational landscapes during mammalian oocyte-to-embryo transition and pre-implantation development. Nature Cell Biology, 2022, 24, 968-980.	10.3	57
4	Lateral transfer of mRNA and protein by migrasomes modifies the recipient cells. Cell Research, 2021, 31, 237-240.	12.0	45
5	COPII mitigates ER stress by promoting formation of ER whorls. Cell Research, 2021, 31, 141-156.	12.0	36
6	Chimeric Phi29 DNA polymerase with helix–hairpin–helix motifs shows enhanced salt tolerance and replication performance. Microbial Biotechnology, 2021, 14, 1642-1656.	4.2	2
7	Identification of the cross-strand chimeric RNAs generated by fusions of bi-directional transcripts. Nature Communications, 2021, 12, 4645.	12.8	16
8	IGSF11 is required for pericentric heterochromatin dissociation during meiotic diplotene. PLoS Genetics, 2021, 17, e1009778.	3 . 5	7
9	Mutual dependency between IncRNA LETN and protein NPM1 in controlling the nucleolar structure and functions sustaining cell proliferation. Cell Research, 2021, 31, 664-683.	12.0	30
10	Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. Journal of Experimental Medicine, 2020, 217, .	8.5	227
11	A Simple Blocking PCRâ€Based Method for the Synthesis of Highâ€Copy dsDNA Tandem Repeats. Small, 2020, 16, e2003671.	10.0	0
12	RiboMiner: a toolset for mining multi-dimensional features of the translatome with ribosome profiling data. BMC Bioinformatics, 2020, 21, 340.	2.6	10
13	DNA Tandem Repeats: A Simple Blocking PCRâ€Based Method for the Synthesis of Highâ€Copy dsDNA Tandem Repeats (Small 43/2020). Small, 2020, 16, 2070234.	10.0	3
14	Expression and functional study of VpV262 Pol, a moderately halophilic DNA polymerase from the Vibrio parahaemolyticus phage VpV262. Enzyme and Microbial Technology, 2020, 139, 109588.	3.2	2
15	Ependymaâ€expressed <scp>CCN</scp> 1 restricts the size of the neural stem cell pool in the adult ventricularâ€subventricular zone. EMBO Journal, 2020, 39, e101679.	7.8	12
16	elF3 Associates with 80S Ribosomes to Promote Translation Elongation, Mitochondrial Homeostasis, and Muscle Health. Molecular Cell, 2020, 79, 575-587.e7.	9.7	52
17	IDH1 fine-tunes cap-dependent translation initiation. Journal of Molecular Cell Biology, 2019, 11, 816-828.	3.3	3
18	Survey of the translation shifts in hepatocellular carcinoma with ribosome profiling. Theranostics, 2019, 9, 4141-4155.	10.0	33

#	Article	IF	CITATIONS
19	ZEB1 Represses Neural Differentiation and Cooperates with CTBP2 to Dynamically Regulate Cell Migration during Neocortex Development. Cell Reports, 2019, 27, 2335-2353.e6.	6.4	49
20	Nutrient Sensing by the Intestinal Epithelium Orchestrates Mucosal Antimicrobial Defense via Translational Control of Hes1. Cell Host and Microbe, 2019, 25, 706-718.e7.	11.0	20
21	Dependency of the Cancer-Specific Transcriptional Regulation Circuitry on the Promoter DNA Methylome. Cell Reports, 2019, 26, 3461-3474.e5.	6.4	22
22	Cideb controls sterolâ€regulated <scp>ER</scp> export of <scp>SREBP</scp> / <scp>SCAP</scp> by promoting cargo loading at <scp>ER</scp> exit sites. EMBO Journal, 2019, 38, .	7.8	31
23	The number of titrated microRNA species dictates ceRNA regulation. Nucleic Acids Research, 2018, 46, 4354-4369.	14.5	32
24	De novo annotation and characterization of the translatome with ribosome profiling data. Nucleic Acids Research, 2018, 46, e61-e61.	14.5	104
25	Function of HNRNPC in breast cancer cells by controlling the dsRNAâ€induced interferon response. EMBO Journal, 2018, 37, .	7.8	131
26	Insights from multidimensional analyses of the panâ€cancer DNA methylome heterogeneity and the uncanonical CpG–gene associations. International Journal of Cancer, 2018, 143, 2814-2827.	5.1	12
27	Oncogenic Properties of NEAT1 in Prostate Cancer Cells Depend on the CDC5L–AGRN Transcriptional Regulation Circuit. Cancer Research, 2018, 78, 4138-4149.	0.9	83
28	Ribosome Profiling Reveals Genome-wide Cellular Translational Regulation upon Heat Stress in Escherichia coli. Genomics, Proteomics and Bioinformatics, 2017, 15, 324-330.	6.9	26
29	Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Research, 2017, 27, 1216-1230.	12.0	298
30	The R-loop is a common chromatin feature of the Arabidopsis genome. Nature Plants, 2017, 3, 704-714.	9.3	160
31	Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells. Nature Immunology, 2017, 18, 921-930.	14.5	132
32	High-throughput validation of ceRNA regulatory networks. BMC Genomics, 2017, 18, 418.	2.8	46
33	CryoEM structure of yeast cytoplasmic exosome complex. Cell Research, 2016, 26, 822-837.	12.0	44
34	Precision Medicine: What Challenges Are We Facing?. Genomics, Proteomics and Bioinformatics, 2016, 14, 253-261.	6.9	15
35	Genome-wide assessment of differential translations with ribosome profiling data. Nature Communications, 2016, 7, 11194.	12.8	179
36	The landscape of accessible chromatin in mammalian preimplantation embryos. Nature, 2016, 534, 652-657.	27.8	550

#	Article	IF	CITATIONS
37	Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks. Genome Research, 2015, 25, 257-267.	5.5	94
38	Double stranded RNA-dependent protein kinase promotes the tumorigenic phenotype in HepG2 hepatocellular carcinoma cells by activating STAT3. Oncology Letters, 2014, 8, 2762-2768.	1.8	9
39	An Extensive MicroRNA-Mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma. Cell, 2011, 147, 370-381.	28.9	671
40	Synergy Analysis Reveals Association between Insulin Signaling and Desmoplakin Expression in Palmitate Treated HepG2 Cells. PLoS ONE, 2011, 6, e28138.	2.5	6
41	The Double-stranded RNA–dependent Protein Kinase Differentially Regulates Insulin Receptor Substrates 1 and 2 in HepG2 Cells. Molecular Biology of the Cell, 2010, 21, 3449-3458.	2.1	51
42	Reconstruct modular phenotype-specific gene networks by knowledge-driven matrix factorization. Bioinformatics, 2009, 25, 2236-2243.	4.1	15
43	Repression of PKR mediates palmitate-induced apoptosis in HepG2 cells through regulation of Bcl-2. Cell Research, 2009, 19, 469-486.	12.0	33
44	A Dynamic Analysis of IRS-PKR Signaling in Liver Cells: A Discrete Modeling Approach. PLoS ONE, 2009, 4, e8040.	2.5	36
45	A hierarchical approach employing metabolic and gene expression profiles to identify the pathways that confer cytotoxicity in HepG2 cells. BMC Systems Biology, 2007, 1, 21.	3.0	31
46	A Three Stage Integrative Pathway Search (TIPS \hat{A} ©) framework to identify toxicity relevant genes and pathways. BMC Bioinformatics, 2007, 8, 202.	2.6	19
47	Identification of genes that regulate multiple cellular processes/ responses in the context of lipotoxicity to hepatoma cells. BMC Genomics, 2007, 8, 364.	2.8	12