
David A Andow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6094872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vegetational Diversity and Arthropod Population Response. Annual Review of Entomology, 1991, 36, 561-586.	11.8	1,158
2	BIOLOGICAL INVASIONS: RECOMMENDATIONS FOR U.S. POLICY AND MANAGEMENT. , 2006, 16, 2035-2054.		722
3	Agroecosystem Diversity and Pest Control: Data, Tentative Conclusions, and New Research Directions. Environmental Entomology, 1983, 12, 625-629.	1.4	438
4	Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Protection, 2014, 64, 150-158.	2.1	344
5	Managing the Evolution of Insect Resistance to Transgenic Plants. Science, 1995, 268, 1894-1896.	12.6	339
6	Assessing environmental risks of transgenic plants. Ecology Letters, 2006, 9, 196-214.	6.4	273
7	GENETICALLY ENGINEERED ORGANISMS AND THE ENVIRONMENT: CURRENT STATUS AND RECOMMENDATIONS1. , 2005, 15, 377-404.		260
8	F2 Screen for Rare Resistance Alleles. Journal of Economic Entomology, 1998, 91, 572-578.	1.8	247
9	Cry1F Resistance in Fall Armyworm Spodoptera frugiperda: Single Gene versus Pyramided Bt Maize. PLoS ONE, 2014, 9, e112958.	2.5	247
10	Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomologia Experimentalis Et Applicata, 2011, 140, 1-16.	1.4	246
11	Multifunctional Agriculture in the United States. BioScience, 2005, 55, 27.	4.9	213
12	Plant structural complexity and host-finding by a parasitoid. Oecologia, 1990, 82, 162-165.	2.0	154
13	Science-Based Risk Assessment for Nontarget Effects of Transgenic Crops. BioScience, 2004, 54, 637.	4.9	147
14	Microbial Populations and Enzyme Activities in Soil In Situ under Transgenic Corn Expressing Cry Proteins from <i>Bacillus thuringiensis</i> . Journal of Environmental Quality, 2008, 37, 647-662.	2.0	147
15	Transgenic Insecticidal Crops and Natural Enemies: A Detailed Review of Laboratory Studies. Environmental Entomology, 2009, 38, 293-306.	1.4	143
16	Consequences of recurrent gene flow from crops to wild relatives. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1879-1886.	2.6	132
17	Environmental and Social Costs of Pesticides: A Preliminary Assessment. Oikos, 1980, 34, 126.	2.7	124
18	Stress and domestication traits increase the relative fitness of crop?wild hybrids in sunflower. Ecology Letters, 2007, 10, 383-393.	6.4	115

#	Article	IF	CITATIONS
19	COMMUNITY GENETICS: EXPANDING THE SYNTHESIS OF ECOLOGY AND GENETICS. Ecology, 2003, 84, 545-558.	3.2	110
20	Frequency of Resistance to <i>Bacillus thuringiensis</i> Toxin Cry1Ab in an Iowa Population of European Corn Borer (Lepidoptera: Crambidae). Journal of Economic Entomology, 2000, 93, 26-30.	1.8	109
21	Frequency of alleles conferring resistance to Bt maize in French and US corn belt populations of the European corn borer, Ostrinia nubilalis. Theoretical and Applied Genetics, 2003, 106, 1225-1233.	3.6	107
22	Using an F2 Screen to Search for Resistance Alleles to Bacillus thuringiensis Toxin in European Corn Borer (Lepidoptera: Crambidae). Journal of Economic Entomology, 1998, 91, 579-584.	1.8	102
23	Evolution of resistance to Bt crops: directional selection in structured environments. Ecology Letters, 2002, 5, 792-801.	6.4	95
24	Identification and expression profile of odorantâ€binding proteins in <i>Halyomorpha halys</i> (Hemiptera: Pentatomidae). Insect Molecular Biology, 2016, 25, 580-594.	2.0	87
25	Early Detection and Mitigation of Resistance to <i>Bt</i> Maize by Western Corn Rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 2016, 109, 1-12.	1.8	87
26	Conundrums of a complex vector for invasive species control: a detailed examination of the horticultural industry. Biological Invasions, 2010, 12, 2837-2851.	2.4	85
27	The evolution of resistance to two-toxin pyramid transgenic crops. , 2011, 21, 503-515.		83
28	Influence of floral resources on sugar feeding and nutrient dynamics of a parasitoid in the field. Ecological Entomology, 2006, 31, 470-480.	2.2	81
29	Larval Crowding and Adult Nutrition Effects on Longevity and Fecundity of Female Trichogramma nubilale Ertle & Davis (Hymenoptera: Trichogrammatidae). Environmental Entomology, 1998, 27, 508-514.	1.4	78
30	The extent of monoculture and its effects on insect pest populations with particular reference to wheat and cotton. Agriculture, Ecosystems and Environment, 1983, 9, 25-35.	5.3	77
31	Long-Term Selection for Resistance to Bacillus thuringiensis Cry1Ac Endotoxin in a Minnesota Population of European Corn Borer (Lepidoptera: Crambidae). Journal of Economic Entomology, 1999, 92, 1021-1030.	1.8	74
32	Frequency of Resistance to Bacillus thuringiensis Toxin Cry1Ab in Southern United States Corn Belt Population of European Corn Borer (Lepidoptera: Crambidae). Journal of Economic Entomology, 2006, 99, 502-507.	1.8	74
33	MONITORING AND ADAPTIVE RESISTANCE MANAGEMENT. , 2002, 12, 1378-1390.		72
34	Sugarcane Borer (Lepidoptera: Crambidae) Resistance to Transgenic Bacillus thuringiensis Maize. Journal of Economic Entomology, 2007, 100, 164-171.	1.8	69
35	Egg Weight, Fecundity, and Longevity Are Increased by Adult Feeding in Ostrinia nubilalis (Lepidoptera:) Tj ETQq	1 1 0.784 2.5	314 rgBT /O
36	Optimal management strategy of insecticide resistance under various insect life histories: Heterogeneous timing of selection and interpatch dispersal. Evolutionary Applications, 2018, 11, 271-283.	3.1	67

#	Article	IF	CITATIONS
37	Yield Loss to Arthropods in Vegetationally Diverse Agroecosystems. Environmental Entomology, 1991, 20, 1228-1235.	1.4	66
38	Insect Populations on Cabbage Grown with Living Mulches. Environmental Entomology, 1986, 15, 293-299.	1.4	64
39	Population Dynamics of an Insect Herbivore in Simple and Diverse Habitats. Ecology, 1990, 71, 1006-1017.	3.2	64
40	Response of coccinellids to their aphid prey at different spatial scales. Population Ecology, 2005, 47, 71-76.	1.2	64
41	Sugarcane Borer (Lepidoptera: Crambidae) Resistance to Transgenic <i>Bacillus thuringiensis</i> Maize. Journal of Economic Entomology, 2007, 100, 164-171.	1.8	63
42	Mortality of Coccinellid (Coleoptera: Coccinellidae) Larvae and Pupae When Prey Become Scarce. Environmental Entomology, 1999, 28, 1092-1100.	1.4	59
43	Ecological risk assessment for Bt crops. Nature Biotechnology, 2006, 24, 749-751.	17.5	59
44	Detection and decay rates of prey and prey symbionts in the gut of a predator through metagenomics. Molecular Ecology Resources, 2015, 15, 880-892.	4.8	59
45	Uncovering Trophic Interactions in Arthropod Predators through DNA Shotgun-Sequencing of Gut Contents. PLoS ONE, 2016, 11, e0161841.	2.5	56
46	Experimental natural history of sustainable agriculture: syndromes of production. Agriculture, Ecosystems and Environment, 1989, 27, 447-462.	5.3	55
47	Characterization of Predation on Egg Masses of Ostrinia nubilalis (Lepidoptera: Pyralidae). Annals of the Entomological Society of America, 1990, 83, 482-486.	2.5	52
48	Field evidence for the exposure of ground beetles to Cry1Ab from transgenic corn. Environmental Biosafety Research, 2005, 4, 113-117.	1.1	50
49	F ₂ Screen Variations and Associated Statistics. Journal of Economic Entomology, 2004, 97, 1756-1764.	1.8	49
50	Population genetics of transgene containment. Ecology Letters, 2004, 7, 213-220.	6.4	49
51	Specialization of Phytophagous Arthropod Communities on Introduced Plants. Ecology, 1994, 75, 296-300.	3.2	44
52	An In-Field Screen for Early Detection and Monitoring of Insect Resistance to <1>Bacillus thuringiensis in Transgenic Crops. Journal of Economic Entomology, 2000, 93, 1055-1064.	1.8	44
53	Flea Beetle Movement in a Broccoli Monoculture and Diculture. Environmental Entomology, 1988, 17, 299-305.	1.4	43
54	Frequency of Resistance to <i>Bacillus thuringiensis</i> Toxin Cry1Ab in Greek and Spanish Population of <i>Sesamia nonagrioides</i> (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2007, 100, 195-201.	1.8	43

#	Article	IF	CITATIONS
55	Dominance of <scp>Cry1F</scp> resistance in <i>Spodoptera frugiperda</i> (Lepidoptera: Noctuidae) on <scp>TC1507</scp> <i>Bt</i> maize in Brazil. Pest Management Science, 2016, 72, 974-979.	3.4	43
56	Frequency and fitness cost of resistance to Bacillus thuringiensis in Chrysomela tremulae (Coleoptera: Chrysomelidae). Heredity, 2006, 97, 127-134.	2.6	41
57	Frequency of Resistance to <l>Bacillus thuringiensis</l> Toxin Cry1Ab in Southern United States Corn Belt Population of European Corn Borer (Lepidoptera: Crambidae). Journal of Economic Entomology, 2006, 99, 502-507.	1.8	41
58	Release of genetically engineered insects: a framework to identify potential ecological effects. Ecology and Evolution, 2013, 3, 4000-4015.	1.9	39
59	Colonization preference of Euschistus servus and Nezara viridula in transgenic cotton varieties, peanut, and soybean. Entomologia Experimentalis Et Applicata, 2011, 139, 161-169.	1.4	38
60	Frequency of Alleles Conferring Resistance to a <i>Bacillus thuringiensis</i> Toxin in a Philippine Population of <i>Scirpophaga incertulas</i> (Lepidoptera: Pyralidae). Journal of Economic Entomology, 2000, 93, 1515-1521.	1.8	36
61	Competitive release and outbreaks of nonâ€ŧarget pests associated with transgenic <i>Bt</i> cotton. Ecological Applications, 2016, 26, 1047-1054.	3.8	36
62	Foraging by a Predaceous Beetle, Coleomegilla maculata (Coleoptera: Coccinellidae), in a Polyculture: Effects of Plant Density and Diversity. Environmental Entomology, 1982, 11, 949-950.	1.4	35
63	Verifying an F ₁ screen for identification and quantification of rare <i>BacillusÂthuringiensis</i> resistance alleles in field populations of the sugarcane borer, <i>DiatraeaÂsaccharalis</i> . Entomologia Experimentalis Et Applicata, 2008, 129, 172-180.	1.4	33
64	Using an F ₂ screen to monitor frequency of resistance alleles to Bt cotton in field populations of <i>Helicoverpa armigera</i> (Hübner) (Lepidoptera: Noctuidae). Pest Management Science, 2009, 65, 391-397.	3.4	33
65	Frequency of Cry1F resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Pest Management Science, 2016, 72, 2295-2302.	3.4	33
66	Host age and host selection byTrichogramma nubilale. Entomophaga, 1990, 35, 141-150.	0.2	32
67	Frequency of Resistance to Bacillus thuringiensis Toxin Cry1Ab in Greek and Spanish Population of Sesamia nonagrioides (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2007, 100, 195-201.	1.8	32
68	<l>Bacillus thuringiensis</l> Cry1Ac Resistance Frequency in Tobacco Budworm (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2009, 102, 381-387.	1.8	32
69	Earthworm populations in a northern U.S. Cornbelt soil are not affected by long-term cultivation of Bt maize expressing Cry1Ab and Cry3Bb1 proteins. Soil Biology and Biochemistry, 2010, 42, 1284-1292.	8.8	32
70	Release density, efficiency and disappearance ofTrichogramma nubilale for control of European corn borer. Entomophaga, 1991, 36, 105-113.	0.2	31
71	Habitat modification contributes to associational resistance between herbivores. Oecologia, 2006, 148, 482-490.	2.0	31
72	Competition between stink bug and heliothine caterpillar pests on cotton at within-plant spatial scales. Entomologia Experimentalis Et Applicata, 2011, 141, 59-70.	1.4	31

#	Article	IF	CITATIONS
73	Sixteen Years of Bt Maize in the EU Hotspot: Why Has Resistance Not Evolved?. PLoS ONE, 2016, 11, e0154200.	2.5	30
74	Limitations of Trichogramma nubilale (Hymenoptera: Trichogrammatidae) as an Inundative Biological Control of Ostrinia nubilalis (Lepidoptera: Crambidae). Environmental Entomology, 1995, 24, 1352-1357.	1.4	29
75	Evolution of Insect Resistance to Bacillus thuringiensis-Transformed Plants. Science, 1996, 273, 1412-1413.	12.6	28
76	Frequency of alleles conferring resistance to Bacillus thuringiensis maize in Louisiana populations of the southwestern corn borer. Entomologia Experimentalis Et Applicata, 2007, 122, 53-58.	1.4	27
77	Dynamics of cannibalism in equalâ€aged cohorts of <i><scp>S</scp>podoptera frugiperda</i> . Ecological Entomology, 2015, 40, 229-236.	2.2	27
78	CANNIBALISM AND INTERSPECIFIC PREDATION:ROLE OF OVIPOSITION BEHAVIOR., 1999, 9, 418-428.		26
79	UK farm-scale evaluations of transgenic herbicide-tolerant crops. Nature Biotechnology, 2003, 21, 1453-1454.	17.5	26
80	Recruitment and Retention of Volunteers in a Citizen Science Network to Detect Invasive Species on Private Lands. Environmental Management, 2016, 58, 606-618.	2.7	25
81	Herbivore response to vegetational diversity: spatial interaction of resources and natural enemies. Population Ecology, 2003, 45, 75-81.	1.2	24
82	Evaluating Resistance to Bt Toxin Cry1Ab by F ₂ Screen in European Populations of Ostrinia nubilalis (Lepidoptera: Crambidae). Journal of Economic Entomology, 2010, 103, 1803-1809.	1.8	24
83	Spatio-Temporal Variation in Landscape Composition May Speed Resistance Evolution of Pests to Bt Crops. PLoS ONE, 2017, 12, e0169167.	2.5	24
84	Parasitism in diversified agroecosystems: Phenology ofTrichogramma minutum [Hymenoptera: Trichogrammatidae]. Entomophaga, 1987, 32, 255-260.	0.2	22
85	Oak Savanna Subhabitat Variation and the Population Biology of <1>Lycaeides melissa samuelis 1 (Lepidoptera: Lycaenidae). Annals of the Entomological Society of America, 2003, 96, 799-809.	2.5	22
86	Editorial: Negative and positive data, statistical power, and confidence intervals. Environmental Biosafety Research, 2003, 2, 75-80.	1.1	22
87	Contamination and management of resistance evolution to high-dose transgenic insecticidal crops. Theoretical Ecology, 2012, 5, 195-209.	1.0	21
88	First detection of a Sesamia nonagrioides resistance allele to Bt maize in Europe. Scientific Reports, 2018, 8, 3977.	3.3	20
89	Host–Parasitoid Interactions in a Transgenic Landscape: Spatial Proximity Effects of Host Density. Environmental Entomology, 2005, 34, 1493-1500.	1.4	19
90	Natural Enemies and the Evolution of Resistance to Transgenic Insecticidal Crops by Pest Insects: The Role of Egg Mortality. Environmental Entomology, 2005, 34, 512-526.	1.4	19

#	Article	IF	CITATIONS
91	Cry Toxins and Proteinase Inhibitors in Transgenic Plants Do Have Non-Zero Effects on Natural Enemies in the Laboratory: Rebuttal to Shelton et al. 2009: Table 1 Environmental Entomology, 2009, 38, 1528-1532.	1.4	16
92	Suppression of <i>Ostrinia nubilalis</i> by <i>Trichogramma nubilale</i> in sweet corn. Entomologia Experimentalis Et Applicata, 1992, 64, 73-85.	1.4	15
93	Cry1Ac resistance allele frequency in field populations of Helicoverpa armigera (Hübner) collected in Telangana and Andhra Pradesh, India. Crop Protection, 2018, 107, 34-40.	2.1	15
94	Absence Makes the Heart Grow Fonder: Isolation Enhances the Frequency of Mating in Coleomegilla maculata (Coleoptera: Coccinellidae). Journal of Insect Behavior, 2008, 21, 495-504.	0.7	14
95	Planting Patterns of In-Field Refuges Observed for Bt Maize in Minnesota. Journal of Economic Entomology, 2010, 103, 1394-1399.	1.8	13
96	Scrutinizing the enemy release hypothesis: population effects of parasitoids on Harmonia axyridis and local host coccinellids in Brazil. BioControl, 2021, 66, 71-82.	2.0	12
97	Resistance risks and management associated with Bt maize in Kenya , 0, , 209-250.		12
98	Pest management and pesticide impacts. International Journal of Tropical Insect Science, 1984, 5, 141-149.	1.0	11
99	Is a larger refuge always better? Dispersal and dose in pesticide resistance evolution. Evolution; International Journal of Organic Evolution, 2017, 71, 1494-1503.	2.3	11
100	Landscape Effects on Reproduction of Euschistus servus (Hemiptera: Pentatomidae), a Mobile, Polyphagous, Multivoltine Arthropod Herbivore. Environmental Entomology, 2018, 47, 660-668.	1.4	11
101	Inheritance of host finding ability on structurally complex surfaces. Oecologia, 2003, 136, 324-328.	2.0	9
102	Inheritance of an oviposition behavior by an egg parasitoid. Heredity, 2002, 88, 437-443.	2.6	8
103	Pedigreed crosses to estimate recessive virulence allele frequencies in natural populations of gall midges. Entomologia Experimentalis Et Applicata, 2010, 135, 18-36.	1.4	8
104	Resisting resistance to Bt-corn. , 2001, , 99-124.		8
105	Bitrophic toxicity of Cry1Ac to <i><scp>C</scp>ycloneda sanguinea</i> , a predator in <scp>B</scp> razilian cotton. Entomologia Experimentalis Et Applicata, 2013, 148, 105-115.	1.4	7
106	Densityâ€dependent population regulation detected in short time series of saproxylic beetles. Population Ecology, 2016, 58, 493-505.	1.2	7
107	Integrating adverse effect analysis into environmental risk assessment for exotic generalist arthropod biological control agents: a three-tiered framework. BioControl, 2021, 66, 113-139.	2.0	7

108 Methodology to support non-target and biodiversity risk assessment.. , 2006, , 108-132.

7

#	Article	IF	CITATIONS
109	Metabarcoding versus mapping unassembled shotgun reads for identification of prey consumed by arthropod epigeal predators. GigaScience, 2022, 11, .	6.4	7
110	A Likelihood-Based Biostatistical Model for Analyzing Consumer Movement in Simultaneous Choice Experiments. Environmental Entomology, 2014, 43, 977-988.	1.4	6
111	Microsite of the green rice leafhopper,Nephotettix cincticeps (Homoptera: Cicadellidae), on rice: Plant nitrogen and leafhopper density. Researches on Population Ecology, 1984, 26, 313-329.	0.9	4
112	Exotic generalist arthropod biological control agents: need to improve environmental risk assessment to ensure safe use. BioControl, 2021, 66, 1-8.	2.0	4
113	Non-target and biological diversity risk assessment , 2008, , 115-137.		3
114	Ecological Context for Examining the Effects of Transgenic Crops in Production Systems. Journal of Crop Improvement, 2004, 12, 457-489.	1.7	2
115	Behavioural and chemical mechanisms of plantâ€mediated deterrence and attraction among frugivorous insects. Ecological Entomology, 2015, 40, 532-542.	2.2	2
116	Investigating the Movement Components of Host Preference in a Highly Mobile Insect Herbivore, Nephotettix cincticeps (Hemiptera: Cicadellidae). Environmental Entomology, 2020, 49, 115-122.	1.4	2
117	Melting curve analysis for detection and identification of ghost parasitoids in host carcasses a month after host death. Methods in Ecology and Evolution, 2021, 12, 1552-1561.	5.2	2
118	Assessing unintended effects of GM plants on biological species. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2011, 6, 119-124.	1.4	1
119	Landscape Effects on Solenopsis invicta (Hymenoptera: Formicidae) and Geocoris spp. (Hemiptera:) Tj ETQq1 1 C 2018, 47, 1057-1063.).784314 r 1.4	gBT /Overlo 1
120	Natural farming and rice planthoppers in Western Japan. Agroecology and Sustainable Food Systems, 0, , 1-16.	1.9	0