## Patricia Duchamp-Viret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6094871/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Odor Response Properties of Rat Olfactory Receptor Neurons. Science, 1999, 284, 2171-2174.                                                                                                   | 12.6 | 262       |
| 2  | Competitive and Noncompetitive Odorant Interactions in the Early Neural Coding of Odorant<br>Mixtures. Journal of Neuroscience, 2008, 28, 2659-2666.                                         | 3.6  | 153       |
| 3  | Single olfactory sensory neurons simultaneously integrate the components of an odour mixture.<br>European Journal of Neuroscience, 2003, 18, 2690-2696.                                      | 2.6  | 140       |
| 4  | Peripheral Odor Coding in the Rat and Frog: Quality and Intensity Specification. Journal of Neuroscience, 2000, 20, 2383-2390.                                                               | 3.6  | 132       |
| 5  | Fasting increases and satiation decreases olfactory detection for a neutral odor in rats. Behavioural<br>Brain Research, 2007, 179, 258-264.                                                 | 2.2  | 130       |
| 6  | Modulation of Spontaneous and Odorant-Evoked Activity of Rat Olfactory Sensory Neurons by Two<br>Anorectic Peptides, Insulin and Leptin. Journal of Neurophysiology, 2009, 101, 2898-2906.   | 1.8  | 97        |
| 7  | 5-hydroxytryptamine action in the rat olfactory bulb: In vitro electrophysiological patch-clamp recordings of juxtaglomerular and mitral cells. Neuroscience, 2005, 131, 717-731.            | 2.3  | 73        |
| 8  | Spiking frequency versus odorant concentration in olfactory receptor neurons. BioSystems, 2000, 58, 133-141.                                                                                 | 2.0  | 64        |
| 9  | Relation between stimulus and response in frog olfactory receptor neurons in vivo. European Journal of Neuroscience, 2003, 18, 1135-1154.                                                    | 2.6  | 64        |
| 10 | Gabaergic control of odor-induced activity in the frog olfactory bulb: Electrophysiological study with picrotoxin and bicuculline. Neuroscience, 1993, 53, 111-120.                          | 2.3  | 59        |
| 11 | Orexin A Modulates Mitral Cell Activity in the Rat Olfactory Bulb: Patch-Clamp Study on Slices and Immunocytochemical Localization of Orexin Receptors. Endocrinology, 2005, 146, 4042-4053. | 2.8  | 58        |
| 12 | Odor processing in the frog olfactory system. Progress in Neurobiology, 1997, 53, 561-602.                                                                                                   | 5.7  | 56        |
| 13 | Dopaminergic modulation of mitral cell activity in the frog olfactory bulb: a combined radioligand binding–electrophysiological study. Neuroscience, 1997, 79, 203-216.                      | 2.3  | 50        |
| 14 | Olfactory discrimination over a wide concentration range. Comparison of receptor cell and bulb neuron abilities. Brain Research, 1990, 517, 256-262.                                         | 2.2  | 45        |
| 15 | Spontaneous activity of first- and second-order neurons in the frog olfactory system. Brain Research, 1994, 662, 31-44.                                                                      | 2.2  | 44        |
| 16 | Patterns of spontaneous activity in single rat olfactory receptor neurons are different in normally breathing and tracheotomized animals. Journal of Neurobiology, 2005, 65, 97-114.         | 3.6  | 39        |
| 17 | A wide concentration range olfactometer for delivery of short reproducible odor pulses. Journal of<br>Neuroscience Methods, 1988, 24, 57-63.                                                 | 2.5  | 34        |
| 18 | Gabaergic control of odour-induced activity in the frog olfactory bulb: Possible gabaergic modulation of granule cell inhibitory action. Neuroscience, 1993, 56, 905-914.                    | 2.3  | 32        |

PATRICIA DUCHAMP-VIRET

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | GABAB receptor-mediated inhibition of mitral/tufted cell activity in the rat olfactory bulb: a whole-cell patch-clamp study in vitro. Neuroscience, 2002, 111, 241-250.                      | 2.3 | 29        |
| 20 | Insulin modulates network activity in olfactory bulb slices: impact on odour processing. Journal of Physiology, 2014, 592, 2751-2769.                                                        | 2.9 | 28        |
| 21 | Odorant-odorant metabolic interaction, a novel actor in olfactory perception and behavioral responsiveness. Scientific Reports, 2017, 7, 10219.                                              | 3.3 | 25        |
| 22 | Odor coding properties of frog olfactory cortical neurons. Neuroscience, 1996, 74, 885-895.                                                                                                  | 2.3 | 24        |
| 23 | CABAB-mediated action in the frog olfactory bulb makes odor responses more salient. Neuroscience, 2000, 97, 771-777.                                                                         | 2.3 | 21        |
| 24 | Temporal aspects of information processing in the first two stages of the frog olfactory system: influence of stimulus intensity. Chemical Senses, 1990, 15, 349-365.                        | 2.0 | 20        |
| 25 | The orexin component of fasting triggers memory processes underlying conditioned food selection in the rat. Learning and Memory, 2014, 21, 185-189.                                          | 1.3 | 10        |
| 26 | Sensory information processing in the frog olfactory pathways. Experimental basis for modeling studies. BioSystems, 1998, 48, 37-45.                                                         | 2.0 | 5         |
| 27 | Responses of single neurons and neuronal ensembles in frog first- and second-order olfactory neurons. Brain Research, 2013, 1536, 144-158.                                                   | 2.2 | 5         |
| 28 | Characterizing and modeling concentration-response curves of olfactory receptor cells.<br>Neurocomputing, 2001, 38-40, 319-325.                                                              | 5.9 | 4         |
| 29 | Brief olfactory learning drives perceptive sensitivity in newborn rabbits: New insights in peripheral processing of odor mixtures and induction. Physiology and Behavior, 2021, 229, 113217. | 2.1 | 4         |
| 30 | In Vivo Electrophysiological Recordings of Olfactory Receptor Neuron Units and<br>Electro-olfactograms in Anesthetized Rats. Methods in Molecular Biology, 2018, 1820, 123-135.              | 0.9 | 3         |
| 31 | The speed of learning instructed stimulus-response association rules in human: Experimental data and model. Brain Research, 2013, 1536, 2-15.                                                | 2.2 | 2         |
| 32 | And what about basic odors?. Behavioral and Brain Sciences, 2008, 31, 87-88.                                                                                                                 | 0.7 | 0         |
| 33 | Olfactory perception and integration. , 2016, , 57-100.                                                                                                                                      |     | 0         |
| 34 | Metabolic status and olfactory function. , 2016, , 315-335.                                                                                                                                  |     | 0         |
| 35 | Fasting Influences Conditioned Memory for Food Preference Through the Orexin System: Hypothesis Gained from Studies in the Rat. , 2018, , 1-15.                                              |     | 0         |
| 36 | Recordings from Olfactory Receptor Neurons in the Rat. Frontiers in Neuroscience, 2001, , .                                                                                                  | 0.0 | 0         |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Hunger increases memory for conditioned food aversion: role of central Orexin. Frontiers in<br>Behavioral Neuroscience, 0, 3, .                                                                                                       | 2.0 | 0         |
| 38 | Single Cell Activities and the Olfactory Code. , 1990, , 235-246.                                                                                                                                                                     |     | 0         |
| 39 | Fasting Influences Conditioned Memory for Food Preference Through the Orexin System: Hypothesis Gained from Studies in the Rat. , 2019, , 2203-2217.                                                                                  |     | 0         |
| 40 | Protocol of controlled odorant stimulation for reducing apnoeic episodes in premature newborns: a randomised open-label Latin-square study with independent evaluation of the main endpoint (PREMODEUR). BMJ Open, 2021, 11, e047141. | 1.9 | 0         |
| 41 | Protocol of controlled odorant stimulation for reducing apnoeic episodes in premature newborns: a randomised open-label Latin-square study with independent evaluation of the main endpoint (PREMODEUR). BMJ Open, 2021, 11, e047141. | 1.9 | 0         |