Beatrice Passani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6094706/publications.pdf

Version: 2024-02-01

117625 3,265 83 34 h-index citations papers

g-index 83 83 83 3010 docs citations times ranked citing authors all docs

155660

55

#	Article	IF	Citations
1	The histamine H3 receptor as a novel therapeutic target for cognitive and sleep disorders. Trends in Pharmacological Sciences, 2004, 25, 618-625.	8.7	212
2	Histamine receptors in the CNS as targets for therapeutic intervention. Trends in Pharmacological Sciences, 2011, 32, 242-249.	8.7	182
3	Central histaminergic system and cognition. Neuroscience and Biobehavioral Reviews, 2000, 24, 107-113.	6.1	113
4	Improvement in Fear Memory by Histamine-Elicited ERK2 Activation in Hippocampal CA3 Cells. Journal of Neuroscience, 2003, 23, 9016-9023.	3.6	103
5	Histamine Pharmacology and New CNS Drug Targets. CNS Neuroscience and Therapeutics, 2011, 17, 620-628.	3.9	95
6	Histamine neurons in the tuberomamillary nucleus: a whole center or distinct subpopulations?. Frontiers in Systems Neuroscience, 2012, 6, 33.	2.5	94
7	Histamine H ₃ receptorâ€mediated impairment of contextual fear conditioning and <i>inâ€vivo</i> inhibition of cholinergic transmission in the rat basolateral amygdala. European Journal of Neuroscience, 2001, 14, 1522-1532.	2.6	90
8	Aversive memory reactivation engages in the amygdala only some neurotransmitters involved in consolidation. Learning and Memory, 2006, 13, 426-430.	1.3	88
9	Activation of histaminergic H3receptors in the rat basolateral amygdala improves expression of fear memory and enhances acetylcholine release. European Journal of Neuroscience, 2002, 16, 521-528.	2.6	87
10	Interactions between histaminergic and cholinergic systems in learning and memory. Behavioural Brain Research, 2001, 124, 183-194.	2.2	81
11	Satiety factor oleoylethanolamide recruits the brain histaminergic system to inhibit food intake. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11527-11532.	7.1	79
12	Preventing adolescent stress-induced cognitive and microbiome changes by diet. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9644-9651.	7.1	79
13	Carbonic anhydrase activation enhances object recognition memory in mice through phosphorylation of the extracellular signal-regulated kinase in the cortex and the hippocampus. Neuropharmacology, 2017, 118, 148-156.	4.1	77
14	Histamine in the brain: Beyond sleep and memory. Biochemical Pharmacology, 2007, 73, 1113-1122.	4.4	74
15	The Histamine H ₃ Receptor and Eating Behavior. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 24-29.	2.5	72
16	Acetylcholine, Histamine, and Cognition: Two Sides of the Same Coin. Learning and Memory, 2004, 11, 1-8.	1.3	71
17	Heterogeneity of histaminergic neurons in the tuberomammillary nucleus of the rat. European Journal of Neuroscience, 2009, 29, 2363-2374.	2.6	65
18	Regional Differential Effects of the Novel Histamine H ₃ Receptor Antagonist 6-[(3-Cyclobutyl-2,3,4,5-tetrahydro-1 <i>H</i> -3-benzazepin-7-yl)oxy]- <i>N</i> -methyl-3-pyridinecarboxamide hydrochloride (GSK189254) on Histamine Release in the Central Nervous System of Freely Moving Rats. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 164-172.	2.5	63

#	Article	IF	Citations
19	A New Kid on the Block? Carbonic Anhydrases as Possible New Targets in Alzheimer's Disease. International Journal of Molecular Sciences, 2019, 20, 4724.	4.1	61
20	<scp> </scp> â€Dopa activates histaminergic neurons. Journal of Physiology, 2011, 589, 1349-1366.	2.9	60
21	The Akt/GSKâ€3β axis as a new signaling pathway of the histamine H ₃ receptor. Journal of Neurochemistry, 2007, 103, 248-258.	3.9	58
22	Endogenous histamine in the medial septum-diagonal band complex increases the release of acetylcholine from the hippocampus: a dual-probe microdialysis study in the freely moving rat. European Journal of Neuroscience, 2002, 15, 1669-1680.	2.6	56
23	The histaminergic system as a target for the prevention of obesity and metabolic syndrome. Neuropharmacology, 2016, 106, 3-12.	4.1	56
24	The Endocannabinoid 2-Arachidonylglycerol Decreases the Immunological Activation of Guinea Pig Mast Cells: Involvement of Nitric Oxide and Eicosanoids. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 256-264.	2.5	47
25	Carbonic anhydrase modulation of emotional memory. Implications for the treatment of cognitive disorders. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1206-1214.	5.2	46
26	Central mechanisms mediating the hypophagic effects of oleoylethanolamide and N-acylphosphatidylethanolamines: different lipid signals?. Frontiers in Pharmacology, 2015, 6, 137.	3.5	43
27	Activation of the histaminergic H ₃ receptor induces phosphorylation of the Akt/GSKâ€3β pathway in cultured cortical neurons and protects against neurotoxic insults. Journal of Neurochemistry, 2009, 110, 1469-1478.	3.9	42
28	Histamine mediates behavioural and metabolic effects of 3â€iodothyroacetic acid, an endogenous end product of thyroid hormone metabolism. British Journal of Pharmacology, 2014, 171, 3476-3484.	5.4	41
29	Histamine in the basolateral amygdala promotes inhibitory avoidance learning independently of hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2536-42.	7.1	41
30	Activation of cannabinoid receptors prevents antigenâ€induced asthmaâ€ike reaction in guinea pigs. Journal of Cellular and Molecular Medicine, 2008, 12, 2381-2394.	3.6	39
31	Oleoylethanolamide treatment affects gut microbiota composition and the expression of intestinal cytokines in Peyer's patches of mice. Scientific Reports, 2018, 8, 14881.	3.3	39
32	Selective brain region activation by histamine H3 receptor antagonist/inverse agonist ABT-239 enhances acetylcholine and histamine release and increases c-Fos expression. Neuropharmacology, 2013, 70, 131-140.	4.1	38
33	Effect of the selective 5-HT1A receptor antagonist WAY 100635 on the inhibition of e.p.s.ps produced by 5-HT in the CA1 region of rat hippocampal slices. British Journal of Pharmacology, 1998, 124, 93-100.	5.4	37
34	Modulation of HERG current andherg gene expression during retinoic acid treatment of human neuroblastoma cells: Potentiating effects of BDNF. Journal of Neurobiology, 1999, 40, 214-225.	3.6	37
35	The Role of Cannabinoids in Inflammatory Modulation of Allergic Respiratory Disorders, Inflammatory Pain and Ischemic Stroke. Current Drug Targets, 2012, 13, 984-993.	2.1	36
36	Brain histamine modulates recognition memory: possible implications in major cognitive disorders. British Journal of Pharmacology, 2020, 177, 539-556.	5.4	36

#	Article	IF	Citations
37	The H3 receptor protean agonist proxyfan enhances the expression of fear memory in the rat. Neuropharmacology, 2005, 48, 246-251.	4.1	34
38	Differential effect of cannabinoid agonists and endocannabinoids on histamine release from distinct regions of the rat brain. European Journal of Neuroscience, 2006, 24, 1633-1644.	2.6	34
39	Memory retrieval of inhibitory avoidance requires histamine H $\langle sub \rangle 1 \langle sub \rangle$ receptor activation in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2714-20.	7.1	34
40	Mast Cell-Derived Histamine Regulates Liver Ketogenesis via Oleoylethanolamide Signaling. Cell Metabolism, 2019, 29, 91-102.e5.	16.2	33
41	The role of carbonic anhydrases in extinction of contextual fear memory. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16000-16008.	7.1	33
42	Antagonism of histamine <scp>H₄</scp> receptors exacerbates clinical and pathological signs of experimental autoimmune encephalomyelitis. British Journal of Pharmacology, 2013, 170, 67-77.	5.4	32
43	Donepezil, an acetylcholine esterase inhibitor, and ABT-239, a histamine H3 receptor antagonist/inverse agonist, require the integrity of brain histamine system to exert biochemical and procognitive effects in the mouse. Neuropharmacology, 2016, 109, 139-147.	4.1	32
44	Cortical acetylcholine release elicited by stimulation of histamine H1 receptors in the nucleus basalis magnocellularis: a dual-probe microdialysis study in the freely moving rat. European Journal of Neuroscience, 2001, 13, 68-78.	2.6	31
45	The anti-inflammatory and immune-modulatory effects of OEA limit DSS-induced colitis in mice. Biomedicine and Pharmacotherapy, 2020, 129, 110368.	5.6	29
46	Long Term Exposure to Retinoic Acid Induces the Expression of IRK1 Channels in HERG Channel-Endowed Neuroblastoma Cells. Biochemical and Biophysical Research Communications, 1998, 244, 706-711.	2.1	28
47	Histamine and neuroinflammation: insights from murine experimental autoimmune encephalomyelitis. Frontiers in Systems Neuroscience, 2012, 6, 32.	2.5	27
48	Brain Histamine Is Crucial for Selective Serotonin Reuptake Inhibitors†Behavioral and Neurochemical Effects. International Journal of Neuropsychopharmacology, 2015, 18, pyv045.	2.1	26
49	Histamine in the brain. Frontiers in Systems Neuroscience, 2014, 8, 64.	2.5	23
50	Cognitive implications for H3 and 5-HT3 receptor modulation of cortical cholinergic function: A parallel story. Methods and Findings in Experimental and Clinical Pharmacology, 1998, 20, 725.	0.8	23
51	Epsp-spike potentiation during primed burst-induced long-term potentiation in the ca1 region of rat hippocampal slices. Neuroscience, 1994, 62, 1021-1032.	2.3	22
52	Neuronal histamine and the memory of emotionally salient events. British Journal of Pharmacology, 2020, 177, 557-569.	5.4	22
53	Histaminergic ligands injected into the nucleus basalis magnocellularis differentially affect fear conditioning consolidation. International Journal of Neuropsychopharmacology, 2013, 16, 575-582.	2.1	21
54	Activation of carbonic anhydrase isoforms involved in modulation of emotional memory and cognitive disorders with histamine agonists, antagonists and derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 719-726.	5.2	21

#	Article	IF	Citations
55	Histamine regulates memory consolidation. Neurobiology of Learning and Memory, 2017, 145, 1-6.	1.9	18
56	Histamine-deficient mice do not respond to the antidepressant-like effects of oleoylethanolamide. Neuropharmacology, 2018, 135, 234-241.	4.1	16
57	Eating disorders: from bench to bedside and back. Journal of Neurochemistry, 2016, 139, 691-699.	3.9	15
58	Brain histamine depletion enhances the behavioural sequences complexity of mice tested in the open-field: Partial reversal effect of the dopamine D2/D3 antagonist sulpiride. Neuropharmacology, 2017, 113, 533-542.	4.1	14
59	Eye movements in Daphnia magna. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1990, 166, 411-20.	1.6	13
60	Histamine Regulates Actin Cytoskeleton in Human Toll-like Receptor 4-activated Monocyte-derived Dendritic Cells Tuning CD4+ T Lymphocyte Response. Journal of Biological Chemistry, 2016, 291, 14803-14814.	3.4	13
61	Histaminergic Neurotransmission as a Gateway for the Cognitive Effect of Oleoylethanolamide in Contextual Fear Conditioning. International Journal of Neuropsychopharmacology, 2017, 20, 392-399.	2.1	13
62	Cortical acetylcholine release elicited by stimulation of histamine H ₁ receptors in the nucleus basalis magnocellularis: a dualâ€probe microdialysis study in the freely moving rat. European Journal of Neuroscience, 2001, 13, 68-78.	2.6	12
63	Modulation of Carbonic Anhydrases Activity in the Hippocampus or Prefrontal Cortex Differentially Affects Social Recognition Memory in Rats. Neuroscience, 2022, 497, 184-195.	2.3	12
64	Carbon monoxide modulates the response of human basophils to FclµRI stimulation through the heme oxygenase pathway. European Journal of Pharmacology, 2003, 465, 289-297.	3.5	11
65	Short- and Long-Term Social Recognition Memory Are Differentially Modulated by Neuronal Histamine. Biomolecules, 2021, 11, 555.	4.0	11
66	Brain histamine and oleoylethanolamide restore behavioral deficits induced by chronic social defeat stress in mice. Neurobiology of Stress, 2021, 14, 100317.	4.0	11
67	The hypophagic factor oleoylethanolamide differentially increases c-fos expression in appetite regulating centres in the brain of wild type and histamine deficient mice. Pharmacological Research, 2016, 113, 100-107.	7.1	10
68	Oxytocin and Fear Memory Extinction: Possible Implications for the Therapy of Fear Disorders?. International Journal of Molecular Sciences, 2021, 22, 10000.	4.1	9
69	Histamine neuronal system as a therapeutic target for the treatment of cognitive disorders. Future Neurology, 2010, 5, 543-555.	0.5	7
70	Brain histamine and behavioral neuroscience. Oncotarget, 2017, 8, 16107-16108.	1.8	7
71	Diet Prevents Social Stress-Induced Maladaptive Neurobehavioural and Gut Microbiota Changes in a Histamine-Dependent Manner. International Journal of Molecular Sciences, 2022, 23, 862.	4.1	7
72	Central histaminergic system interactions and cognition. , 2006, 98, 149-163.		6

#	Article	IF	CITATIONS
73	Therapeutic Potentials of Itasetron (DAU 6215), a Novel 5-HT3Receptor Antagonist, in the Treatment of Central Nervous System Disorders. CNS Neuroscience & Therapeutics, 1996, 2, 195-213.	4.0	5
74	A Duet Between Histamine and Oleoylethanolamide in the Control of Homeostatic and Cognitive Processes. Current Topics in Behavioral Neurosciences, 2021, , 389-410.	1.7	3
75	The Endocannabinoid-Like Derivative Oleoylethanolamide at the Gut–Brain Interface: A "Lipid Way―to Control Energy Intake and Body Weight. , 2016, , .		2
76	Editorial: Dual Role of Microglia in Health and Disease: Pushing the Balance Towards Repair. Frontiers in Cellular Neuroscience, 2020, 14, 259.	3.7	2
77	Intercellular communication in normal and aberrant crypts of rat colon mucosa. Cancer Letters, 1998, 123, 77-81.	7.2	1
78	Histamine and Appetite. Receptors, 2016, , 341-360.	0.2	1
79	Histaminergic Regulation of Blood–Brain Barrier Activity. Receptors, 2016, , 215-230.	0.2	1
80	Cognitive Functions, Attention- Defi cit Hyperactivity Disorders, and Alzheimer's Disease., 2008,, 213-239.		1
81	Different Peas in the Same Pod: The Histaminergic Neuronal Heterogeneity. Current Topics in Behavioral Neurosciences, 2021, , .	1.7	1
82	Histaminergic Modulation of Recognition Memory. Handbook of Behavioral Neuroscience, 2018, 27, 415-445.	0.7	0
83	Brain Histamine Affects Eating and Drinking Behaviours. , 2011, , 319-336.		O