
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6094676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Throughput Profiling of Colorectal Cancer Liver Metastases Reveals Intra- and Inter-Patient Heterogeneity in the EGFR and WNT Pathways Associated with Clinical Outcome. Cancers, 2022, 14, 2084.	3.7	5
2	IGFBP2 Is a Potential Master Regulator Driving the Dysregulated Gene Network Responsible for Short Survival in Glioblastoma Multiforme. Frontiers in Genetics, 2021, 12, 670240.	2.3	8
3	Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks. PLoS ONE, 2021, 16, e0258623.	2.5	6
4	Constructing temporal regulatory cascades in the context of development and cell differentiation. PLoS ONE, 2020, 15, e0231326.	2.5	1
5	Transcription Factor Databases. , 2019, , 134-141.		0
6	Walking pathways with positive feedback loops reveal DNA methylation biomarkers of colorectal cancer. BMC Bioinformatics, 2019, 20, 119.	2.6	37
7	TFClass: expanding the classification of human transcription factors to their mammalian orthologs. Nucleic Acids Research, 2018, 46, D343-D347.	14.5	112
8	Removing Background Co-occurrences of Transcription Factor Binding Sites Greatly Improves the Prediction of Specific Transcription Factor Cooperations. Frontiers in Genetics, 2018, 9, 189.	2.3	8
9	Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation, 2017, 135, 1832-1847.	1.6	462
10	geneXplainR: An R interface for the geneXplain platform. Journal of Open Source Software, 2017, 2, 412.	4.6	3
11	Computational Detection of Stage-Specific Transcription Factor Clusters during Heart Development. Frontiers in Genetics, 2016, 7, 33.	2.3	11
12	Computational Identification of Key Regulators in Two Different Colorectal Cancer Cell Lines. Frontiers in Genetics, 2016, 7, 42.	2.3	10
13	NF-Y Binding Site Architecture Defines a C-Fos Targeted Promoter Class. PLoS ONE, 2016, 11, e0160803.	2.5	17
14	Identifying cell-specific microRNA transcriptional start sites. Bioinformatics, 2016, 32, 2403-2410.	4.1	18
15	Multi-omics "upstream analysis―of regulatory genomic regions helps identifying targets against methotrexate resistance of colon cancer. EuPA Open Proteomics, 2016, 13, 1-13.	2.5	31
16	PC-TraFF: identification of potentially collaborating transcription factors using pointwise mutual information. BMC Bioinformatics, 2015, 16, 400.	2.6	23
17	"Upstream Analysisâ€: An Integrated Promoter-Pathway Analysis Approach to Causal Interpretation of Microarray Data. Microarrays (Basel, Switzerland), 2015, 4, 270-286.	1.4	55
18	TFClass: a classification of human transcription factors and their rodent orthologs. Nucleic Acids Research, 2015, 43, D97-D102.	14.5	78

#	Article	IF	CITATIONS
19	Multiobjective triclustering of time-series transcriptome data reveals key genes of biological processes. BMC Bioinformatics, 2015, 16, 200.	2.6	19
20	EndoNet: an information resource about the intercellular signaling network. BMC Systems Biology, 2014, 8, 49.	3.0	10
21	Coexpression and coregulation analysis of time-series gene expression data in estrogen-induced breast cancer cell. Algorithms for Molecular Biology, 2013, 8, 9.	1.2	39
22	MatrixCatch - a novel tool for the recognition of composite regulatory elements in promoters. BMC Bioinformatics, 2013, 14, 241.	2.6	22
23	Inhomogeneous Parsimonious Markov Models. Lecture Notes in Computer Science, 2013, , 321-336.	1.3	3
24	TFClass: an expandable hierarchical classification of human transcription factors. Nucleic Acids Research, 2013, 41, D165-D170.	14.5	132
25	CRITERIA FOR AN UPDATED CLASSIFICATION OF HUMAN TRANSCRIPTION FACTOR DNA-BINDING DOMAINS. Journal of Bioinformatics and Computational Biology, 2013, 11, 1340007.	0.8	9
26	A Discriminative Approach for Unsupervised Clustering of DNA Sequence Motifs. PLoS Computational Biology, 2013, 9, e1002958.	3.2	12
27	The architecture of the gene regulatory networks of different tissues. Bioinformatics, 2012, 28, i509-i514.	4.1	24
28	Using potential master regulator sites and paralogous expansion to construct tissue-specific transcriptional networks. BMC Systems Biology, 2012, 6, S15.	3.0	5
29	The ontology-based answers (OBA) service: a connector for embedded usage of ontologies in applications. Frontiers in Genetics, 2012, 3, 197.	2.3	14
30	Advanced Computational Biology Methods Identify Molecular Switches for Malignancy in an EGF Mouse Model of Liver Cancer. PLoS ONE, 2011, 6, e17738.	2.5	17
31	Integration of gene expression data with prior knowledge for network analysis and validation. BMC Research Notes, 2011, 4, 520.	1.4	3
32	Molecular mechanistic associations of human diseases. BMC Systems Biology, 2010, 4, 124.	3.0	11
33	The BioPAX community standard for pathway data sharing. Nature Biotechnology, 2010, 28, 935-942.	17.5	613
34	An approach to evaluate the topological significance of motifs and other patterns in regulatory networks. BMC Systems Biology, 2009, 3, 53.	3.0	12
35	The pairwise disconnectivity index as a new metric for the topological analysis of regulatory networks. BMC Bioinformatics, 2008, 9, 227.	2.6	33
36	The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Briefings in Bioinformatics, 2008, 9, 326-332.	6.5	390

#	Article	IF	CITATIONS
37	Building a knowledge base for systems pathology. Briefings in Bioinformatics, 2008, 9, 518-531.	6.5	14
38	EndoNet: an information resource about regulatory networks of cell-to-cell communication. Nucleic Acids Research, 2007, 36, D689-D694.	14.5	8
39	DEEPA tool for differential expression effector prediction. Nucleic Acids Research, 2007, 35, W619-W624.	14.5	3
40	Integrative content-driven concepts for bioinformatics "beyond the cellâ€: Journal of Biosciences, 2007, 32, 169-180.	1.1	11
41	TRANSPATH(R): an information resource for storing and visualizing signaling pathways and their pathological aberrations. Nucleic Acids Research, 2006, 34, D546-D551.	14.5	157
42	Evaluating phylogenetic footprinting for human-rodent comparisons. Bioinformatics, 2006, 22, 430-437.	4.1	28
43	Beyond microarrays: Finding key transcription factors controlling signal transduction pathways. BMC Bioinformatics, 2006, 7, S13.	2.6	78
44	TiProD: the Tissue-specific Promoter Database. Nucleic Acids Research, 2006, 34, D104-D107.	14.5	29
45	EndoNet: an information resource about endocrine networks. Nucleic Acids Research, 2006, 34, D540-D545.	14.5	11
46	Eukaryotic regulatory sequences. , 2005, , .		0
47	Construction of predictive promoter models on the example of antibacterial response of human epithelial cells. Theoretical Biology and Medical Modelling, 2005, 2, 2.	2.1	8
48	Deriving an ontology for human gene expression sources from the CYTOMER database on human organs and cell types. In Silico Biology, 2005, 5, 61-6.	0.9	8
49	Topology of mammalian transcription networks. Genome Informatics, 2005, 16, 270-8.	0.4	26
50	A Novel Computational Approach for the Prediction of Networked Transcription Factors of Aryl Hydrocarbon-Receptor-Regulated Genes. Molecular Pharmacology, 2004, 66, 1557-1572.	2.3	33
51	TRANSPATH®—A High Quality Database Focused on Signal Transduction. Comparative and Functional Genomics, 2004, 5, 163-168.	2.0	33
52	TRANSFAC, TRANSPATH and CYTOMER as starting points for an ontology of regulatory networks. In Silico Biology, 2004, 4, 55-61.	0.9	38
53	Consistent re-modeling of signaling pathways and its implementation in the TRANSPATH database. Genome Informatics, 2004, 15, 244-54.	0.4	14
54	Systematic DNA-binding domain classification of transcription factors. Genome Informatics, 2004, 15, 276-86.	0.4	27

#	Article	IF	CITATIONS
55	PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Research, 2003, 31, 266-269.	14.5	220
56	TRANSPATH(R): an integrated database on signal transduction and a tool for array analysis. Nucleic Acids Research, 2003, 31, 97-100.	14.5	80
57	Composition-sensitive analysis of the human genome for regulatory signals. In Silico Biology, 2003, 3, 145-71.	0.9	19
58	TRANSCompel(R): a database on composite regulatory elements in eukaryotic genes. Nucleic Acids Research, 2002, 30, 332-334.	14.5	112
59	S/MARt DB: a database on scaffold/matrix attached regions. Nucleic Acids Research, 2002, 30, 372-374.	14.5	54
60	The TGF-β–Smad network: introducing bioinformatic tools. Trends in Genetics, 2002, 18, 96-103.	6.7	32
61	Modeling regulatory pathways with the use of the TRANSFAC system. Gene Function & Disease, 2002, 3, 9-17.	0.3	2
62	Computer-assisted identification of cell cycle-related genes: new targets for E2F transcription factors. Journal of Molecular Biology, 2001, 309, 99-120.	4.2	165
63	Database-assisted promoter analysis. Trends in Plant Science, 2001, 6, 251-255.	8.8	44
64	Experimental analysis and computer prediction of CTF/NFI transcription factor DNA binding sites 1 1Edited by M. Yaniv. Journal of Molecular Biology, 2000, 297, 833-848.	4.2	70
65	Recognition of NFATp/AP-1 composite elements within genes induced upon the activation of immune cells. Journal of Molecular Biology, 1999, 288, 353-376.	4.2	118
66	Activation of nuclear factor-ήB in macrophages by mycoplasmal lipopeptides. European Journal of Immunology, 1998, 28, 4207-4212.	2.9	36
67	Computer-Assisted Methods for the Identification and Characterization of Polymerase II Promoters. , 1998, 20, 25-40.		1
68	Parathyroid Hormone-related Protein Antagonizes the Action of Parathyroid Hormone on Adult Cardiomyocytes. Journal of Biological Chemistry, 1996, 271, 3074-3078.	3.4	17
69	Modellierung der Genregulation in Eukaryonten. IT - Information Technology, 1996, 38, 27-31.	0.9	0
70	Combining structural analysis of DNA with search routines for the detection of transcription regulatory elements. Bioinformatics, 1996, 12, 441-446.	4.1	29
71	A compilation of composite regulatory elements affecting gene transcription in vertebrates. Nucleic Acids Research, 1995, 23, 4097-4103.	14.5	96
72	Matlnd and Matlnspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Research, 1995, 23, 4878-4884.	14.5	2,535

#	Article	IF	CITATIONS
73	Recognition of regulatory regions in genomic sequences. Journal of Biotechnology, 1994, 35, 273-280.	3.8	67
74	The Human Immunodeficiency Virus Type 1 Encoded Vpu Protein is Phosphorylated by Casein Kinase-2 (CK-2) at Positions Ser52 and Ser56 within a Predicted α-Helix-Turn-α-Helix-Motif. Journal of Molecular Biology, 1994, 236, 16-25.	4.2	164
75	PARATHYROID HORMONE GENE EXPRESSION: IDENTIFICATION OF AN UPSTREAM ELEMENT INVOLVED IN DOWN-REGULATION BY VITAMIN D3. , 1991, , 306-307.		0
76	The promoter of the human parathyroid hormone gene contains a functional cyclic AMP-response element. Nucleic Acids Research, 1990, 18, 5677-5683.	14.5	29
77	Compilation of transcription regulating proteins. Nucleic Acids Research, 1988, 16, 1879-1902.	14.5	311
78	Transcription in Eukaryotes—The Role of Transcription Complexes and Their Components. Angewandte Chemie International Edition in English, 1987, 26, 218-227.	4.4	9
79	Zinc ions are differentially required for the transcription of ribosomal 5S RNA and tRNA in a HeLa-cell extract. Nucleic Acids Research, 1984, 12, 8971-8985.	14.5	23
80	Faithful Transcription of Ribosomal 5-S RNA in vitro Depends on the Presence of Several Factors. FEBS Journal, 1983, 131, 189-194.	0.2	11
81	Modulation of the Nucleosome Structure by Histone Acetylation. FEBS Journal, 1980, 110, 143-152.	0.2	77
82	Computational Methods and Bioinformatic Tools. , 0, , 769-904.		0
83	Isolation and Analysis of Gene Regulatory Sequences. , 0, , .		2