Xiaolin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6093816/publications.pdf

Version: 2024-02-01

110170 53660 17,181 66 45 64 citations h-index g-index papers 66 66 66 21506 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nonsacrificial Additive for Tuning the Cathode–Electrolyte Interphase of Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 4111-4118.	4.0	8
2	Interfacial-engineering-enabled practical low-temperature sodium metal battery. Nature Nanotechnology, 2022, 17, 269-277.	15.6	69
3	Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano Energy, 2022, 98, 107269.	8.2	102
4	High-Performance InZn Alloy Anodes toward Practical Aqueous Zinc Batteries. ACS Energy Letters, 2022, 7, 1888-1895.	8.8	26
5	Low-solvation electrolytes for high-voltage sodium-ion batteries. Nature Energy, 2022, 7, 718-725.	19.8	137
6	Engineering stable Zn-MnO2 batteries by synergistic stabilization between the carbon nanofiber core and birnessite-MnO2 nanosheets shell. Chemical Engineering Journal, 2021, 405, 126969.	6.6	74
7	Effects of waterâ€based binders on electrochemical performance of manganese dioxide cathode in mild aqueous zinc batteries. , 2021, 3, 473-481.		44
8	Rational Design of Electrolytes for Long-Term Cycling of Si Anodes over a Wide Temperature Range. ACS Energy Letters, 2021, 6, 387-394.	8.8	58
9	Vacancyâ€Enabled O3 Phase Stabilization for Manganeseâ€Rich Layered Sodium Cathodes. Angewandte Chemie - International Edition, 2021, 60, 8258-8267.	7.2	59
10	Vacancyâ€Enabled O3 Phase Stabilization for Manganeseâ€Rich Layered Sodium Cathodes. Angewandte Chemie, 2021, 133, 8339-8348.	1.6	14
11	Crossroads in the renaissance of rechargeable aqueous zinc batteries. Materials Today, 2021, 45, 191-212.	8.3	171
12	Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading. Nature Nanotechnology, 2021, 16, 1113-1120.	15.6	147
13	A glance of the layered transition metal oxide cathodes in sodium and lithium-ion batteries: difference and similarities. Nanotechnology, 2021, 32, 422501.	1.3	11
14	A Micrometerâ€Sized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon. Advanced Materials, 2021, 33, e2103095.	11.1	99
15	A general strategy for batch development of high-performance and cost-effective sodium layered cathodes. Nano Energy, 2021, 89, 106371.	8.2	22
16	Mechanistic investigation of redox processes in Zn–MnO ₂ battery in mild aqueous electrolytes. Journal of Materials Chemistry A, 2021, 9, 20766-20775.	5.2	18
17	Uncommon Behavior of Li Doping Suppresses Oxygen Redox in P2â€Type Manganeseâ€Rich Sodium Cathodes. Advanced Materials, 2021, 33, e2107141.	11.1	34
18	Enhancing Chemical Interaction of Polysulfide and Carbon through Synergetic Nitrogen and Phosphorus Doping. ACS Sustainable Chemistry and Engineering, 2020, 8, 806-813.	3.2	11

#	Article	IF	CITATIONS
19	Enabling Natural Graphite in Highâ€Voltage Aqueous Graphite Zn Metal Dualâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001256.	10.2	43
20	Controlling Ion Coordination Structure and Diffusion Kinetics for Optimized Electrode-Electrolyte Interphases and High-Performance Si Anodes. Chemistry of Materials, 2020, 32, 8956-8964.	3.2	24
21	Aqueous Dualâ€ion Batteries: Enabling Natural Graphite in Highâ€Voltage Aqueous Graphite Zn Metal Dualâ€ion Batteries (Adv. Energy Mater. 41/2020). Advanced Energy Materials, 2020, 10, 2070169.	10.2	1
22	Electrodeposited Zinc-Based Films as Anodes for Aqueous Zinc Batteries. ACS Applied Materials & Amp; Interfaces, 2020, 12, 42763-42772.	4.0	43
23	Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nature Communications, 2020, 11, 1474.	5 . 8	298
24	Unlocking the passivation nature of the cathode–air interfacial reactions in lithium ion batteries. Nature Communications, 2020, 11, 3204.	5.8	55
25	Stable Sodium Metal Batteries via Manipulation of Electrolyte Solvation Structure. Small Methods, 2020, 4, 1900856.	4.6	73
26	Controlling Surface Phase Transition and Chemical Reactivity of O3-Layered Metal Oxide Cathodes for High-Performance Na-Ion Batteries. ACS Energy Letters, 2020, 5, 1718-1725.	8.8	64
27	Charging activation and desulfurization of MnS unlock the active sites and electrochemical reactivity for Zn-ion batteries. Nano Energy, 2020, 75, 104869.	8.2	66
28	Edge Dislocations Induce Improved Photocatalytic Efficiency of Colored TiO ₂ . Advanced Materials Interfaces, 2019, 6, 1901121.	1.9	30
29	Highâ€Performance Silicon Anodes Enabled By Nonflammable Localized Highâ€Concentration Electrolytes. Advanced Energy Materials, 2019, 9, 1900784.	10.2	175
30	Enhanced Stability of Li Metal Anodes by Synergetic Control of Nucleation and the Solid Electrolyte Interphase. Advanced Energy Materials, 2019, 9, 1901764.	10.2	108
31	Origin of lithium whisker formation and growth under stress. Nature Nanotechnology, 2019, 14, 1042-1047.	15.6	211
32	Electrolyte Effect on the Electrochemical Performance of Mild Aqueous Zinc-Electrolytic Manganese Dioxide Batteries. ACS Applied Materials & Dioxide Batteries. ACS Applied Materials & Dioxide Batteries.	4.0	47
33	A comparative study of pomegranate Sb@C yolk–shell microspheres as Li and Na-ion battery anodes. Nanoscale, 2019, 11, 348-355.	2.8	45
34	Revealing the Atomic Origin of Heterogeneous Li″on Diffusion by Probing Na. Advanced Materials, 2019, 31, e1805889.	11.1	30
35	Hard Carbon as Sodium″on Battery Anodes: Progress and Challenges. ChemSusChem, 2019, 12, 133-144.	3 . 6	257
36	Interphases in Sodiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1703082.	10.2	236

#	Article	IF	CITATIONS
37	From Charge Storage Mechanism to Performance: A Roadmap toward High Specific Energy Sodiumâ€lon Batteries through Carbon Anode Optimization. Advanced Energy Materials, 2018, 8, 1703268.	10.2	396
38	A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy, 2018, 50, 589-597.	8.2	191
39	Lithiumâ€Pretreated Hard Carbon as Highâ€Performance Sodiumâ€Ion Battery Anodes. Advanced Energy Materials, 2018, 8, 1801441.	10.2	105
40	Exceptionally High Ionic Conductivity in Na ₃ P _{0.62} As _{0.38} S ₄ with Improved Moisture Stability for Solidâ€State Sodiumâ€ion Batteries. Advanced Materials, 2017, 29, 1605561.	11.1	164
41	Selfâ€Assembled Fe–Nâ€Doped Carbon Nanotube Aerogels with Singleâ€Atom Catalyst Feature as Highâ€Efficiency Oxygen Reduction Electrocatalysts. Small, 2017, 13, 1603407.	5.2	254
42	Tuning the Solid Electrolyte Interphase for Selective Li―and Na―lon Storage in Hard Carbon. Advanced Materials, 2017, 29, 1606860.	11.1	157
43	Design of porous Si/C–graphite electrodes with long cycle stability and controlled swelling. Energy and Environmental Science, 2017, 10, 1427-1434.	15.6	140
44	Sandwich-structured nanocomposites of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles as high-performance Li-ion battery anodes. Nano Research, 2017, 10, 2923-2933.	5.8	30
45	Template-directed synthesis of nitrogen- and sulfur-codoped carbon nanowire aerogels with enhanced electrocatalytic performance for oxygen reduction. Nano Research, 2017, 10, 1888-1895.	5.8	34
46	Multifunctional SnO2/3D graphene hybrid materials for sodium-ion and lithium-ion batteries with excellent rate capability and long cycle life. Nano Research, 2017, 10, 4398-4414.	5.8	63
47	Yolk-shell structured Sb@C anodes for high energy Na-ion batteries. Nano Energy, 2017, 40, 504-511.	8.2	123
48	Sugar Blowingâ€Induced Porous Cobalt Phosphide/Nitrogenâ€Doped Carbon Nanostructures with Enhanced Electrochemical Oxidation Performance toward Water and Other Small Molecules. Small, 2017, 13, 1700796.	5.2	65
49	Ultraâ€Thick, Lowâ€Tortuosity, and Mesoporous Wood Carbon Anode for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1600377.	10.2	257
50	Enabling room temperature sodium metal batteries. Nano Energy, 2016, 30, 825-830.	8.2	248
51	The importance of solid electrolyte interphase formation for long cycle stability full-cell Na-ion batteries. Nano Energy, 2016, 27, 664-672.	8.2	41
52	Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature Energy, 2016, $1, .$	19.8	2,186
53	LiCoPO4 cathode from a CoHPO4·xH2O nanoplate precursor for high voltage Li-ion batteries. Heliyon, 2016, 2, e00081.	1.4	10
54	Advanced Sodium Ion Battery Anode Constructed <i>via</i> Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder. ACS Nano, 2015, 9, 11933-11941.	7.3	255

#	Article	IF	CITATIONS
55	Controlling SEI Formation on SnSbâ€Porous Carbon Nanofibers for Improved Na Ion Storage. Advanced Materials, 2014, 26, 2901-2908.	11.1	441
56	Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature Communications, 2014, 5, 4105.	5.8	1,160
57	Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid. Advanced Functional Materials, 2013, 23, 929-946.	7.8	590
58	Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. Journal of Materials Chemistry, 2012, 22, 11014.	6.7	280
59	Functionalized Graphene Sheets as Molecular Templates for Controlled Nucleation and Selfâ€Assembly of Metal Oxideâ€Graphene Nanocomposites. Advanced Materials, 2012, 24, 5136-5141.	11.1	92
60	Edge magnetotransport fingerprints in disordered graphene nanoribbons. Physical Review B, 2010, 82, .	1.1	63
61	Chemical self-assembly of graphene sheets. Nano Research, 2009, 2, 336-342.	5.8	80
62	Simultaneous Nitrogen Doping and Reduction of Graphene Oxide. Journal of the American Chemical Society, 2009, 131, 15939-15944.	6.6	1,673
63	Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science, 2008, 319, 1229-1232.	6.0	4,504
64	Langmuirâ^Blodgett Assembly of Densely Aligned Single-Walled Carbon Nanotubes from Bulk Materials. Journal of the American Chemical Society, 2007, 129, 4890-4891.	6.6	373
65	Selective Synthesis Combined with Chemical Separation of Single-Walled Carbon Nanotubes for Chirality Selection. Journal of the American Chemical Society, 2007, 129, 15770-15771.	6.6	282
66	Carbon Nanotubes: From Growth, Placement and Assembly Control to $60mV/decade$ and Sub- $60mV/decade$ Tunnel Transistors. , 2006 , , .		14