
Hans D Ochs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6093027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genetics, 2001, 27, 20-21.	9.4	2,964
2	Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell, 1994, 78, 635-644.	13.5	933
3	Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. Journal of Clinical Immunology, 2020, 40, 24-64.	2.0	881
4	The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell, 1993, 72, 291-300.	13.5	782
5	International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. Journal of Clinical Immunology, 2018, 38, 96-128.	2.0	732
6	Primary Immunodeficiency Diseases: an Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. Journal of Clinical Immunology, 2015, 35, 696-726.	2.0	621
7	Human Tyrosine Kinase 2 Deficiency Reveals Its Requisite Roles in Multiple Cytokine Signals Involved in Innate and Acquired Immunity. Immunity, 2006, 25, 745-755.	6.6	601
8	Human uracil–DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nature Immunology, 2003, 4, 1023-1028.	7.0	573
9	Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. Journal of Clinical Immunology, 2020, 40, 66-81.	2.0	525
10	X-Linked Agammaglobulinemia. Medicine (United States), 2006, 85, 193-202.	0.4	516
11	Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Current Opinion in Rheumatology, 2003, 15, 430-435.	2.0	502
12	The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. Journal of Clinical Immunology, 2018, 38, 129-143.	2.0	488
13	Primary Immunodeficiency Diseases: An Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency. Frontiers in Immunology, 2014, 5, 162.	2.2	466
14	Primary immunodeficiency diseases: An update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. Journal of Allergy and Clinical Immunology, 2007, 120, 776-794.	1.5	446
15	X-Linked Lymphoproliferative Disease. Journal of Experimental Medicine, 2000, 192, 337-346.	4.2	438
16	Genetic Linkage of Hyper-IgE Syndrome to Chromosome 4. American Journal of Human Genetics, 1999, 65, 735-744.	2.6	360
17	The Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2006, 117, 725-738.	1.5	350
18	Clinical course of patients with WASP gene mutations. Blood, 2004, 103, 456-464.	0.6	320

#	Article	IF	CITATIONS
19	Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation. Blood, 2004, 104, 4010-4019.	0.6	308
20	Long–term hepatic adenovirus–mediated gene expression in mice following CTLA4Ig administration. Nature Genetics, 1995, 11, 191-197.	9.4	298
21	Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced TH17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. Journal of Allergy and Clinical Immunology, 2008, 122, 181-187.	1.5	290
22	DOCK8 Deficiency: Clinical and Immunological Phenotype and Treatment Options - a Review of 136 Patients. Journal of Clinical Immunology, 2015, 35, 189-198.	2.0	284
23	Astrovirus Encephalitis in Boy with X-linked Agammaglobulinemia. Emerging Infectious Diseases, 2010, 16, 918-925.	2.0	283
24	Safety and Efficacy of Self-Administered Subcutaneous Immunoglobulin in Patients with Primary Immunodeficiency Diseases. Journal of Clinical Immunology, 2006, 26, 265-273.	2.0	265
25	Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: Forkhead box protein 3 mutations and lack of regulatory T cells. Journal of Allergy and Clinical Immunology, 2007, 120, 744-750.	1.5	260
26	Wiskott-Aldrich Syndrome/X-Linked Thrombocytopenia: WASP Gene Mutations, Protein Expression, and Phenotype. Blood, 1997, 90, 2680-2689.	0.6	228
27	A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→AAUGAA) leads to the IPEX syndrome. Immunogenetics, 2001, 53, 435-439.	1.2	214
28	Immunologic responses to bacteriophage ϕX 174 in immunodeficiency diseases. Journal of Clinical Investigation, 1971, 50, 2559-2568.	3.9	203
29	The 2015 IUIS Phenotypic Classification for Primary Immunodeficiencies. Journal of Clinical Immunology, 2015, 35, 727-738.	2.0	199
30	Molecular analysis of a large cohort of patients with the hyper immunoglobulin M (IgM) syndrome. Blood, 2005, 105, 1881-1890.	0.6	193
31	FOXP3 acts as a rheostat of the immune response. Immunological Reviews, 2005, 203, 156-164.	2.8	189
32	X-linked thrombocytopenia (XLT) due to WAS mutations: clinical characteristics, long-term outcome, and treatment options. Blood, 2010, 115, 3231-3238.	0.6	178
33	IPEX, FOXP3 and regulatory T-cells: a model for autoimmunity. Immunologic Research, 2007, 38, 112-121.	1.3	164
34	Comèl-Netherton syndrome defined as primary immunodeficiency. Journal of Allergy and Clinical Immunology, 2009, 124, 536-543.	1.5	164
35	Wiskott-Aldrich Syndrome: Diagnosis, Clinical and Laboratory Manifestations, and Treatment. Biology of Blood and Marrow Transplantation, 2009, 15, 84-90.	2.0	158
36	Mutations of the CD40 Ligand Gene and Its Effect on CD40 Ligand Expression in Patients With X-Linked Hyper IgM Syndrome. Blood, 1998, 92, 2421-2434.	0.6	149

#	Article	IF	CITATIONS
37	Tuberculosis and impaired IL-23–dependent IFN-γ immunity in humans homozygous for a common <i>TYK2</i> missense variant. Science Immunology, 2018, 3, .	5.6	148
38	The Hyper IgM Syndrome—An Evolving Story. Pediatric Research, 2004, 56, 519-525.	1.1	129
39	Recommendations for live viral and bacterial vaccines inÂimmunodeficient patients and their close contacts. Journal of Allergy and Clinical Immunology, 2014, 133, 961-966.	1.5	128
40	Hematopoietic stem cell transplantation in patients with gain-of-function signal transducer and activator of transcription 1 mutations. Journal of Allergy and Clinical Immunology, 2018, 141, 704-717.e5.	1.5	128
41	Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome. Blood, 2016, 127, 2513-2522.	0.6	118
42	GPCR-specific autoantibody signatures are associated with physiological and pathological immune homeostasis. Nature Communications, 2018, 9, 5224.	5.8	116
43	Dermatologic and Immunologic Findings in the Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-linked Syndrome. Archives of Dermatology, 2004, 140, 466-72.	1.7	113
44	Long-term outcomes of 176 patients with X-linked hyper-IgM syndrome treated with or without hematopoietic cell transplantation. Journal of Allergy and Clinical Immunology, 2017, 139, 1282-1292.	1.5	107
45	Flow cytometry-based diagnosis of primary immunodeficiency diseases. Allergology International, 2018, 67, 43-54.	1.4	97
46	Missense mutations of the WASP gene cause intermittent X-linked thrombocytopenia. Blood, 2002, 99, 2268-2269.	0.6	93
47	Clinical spectrum, pathophysiology and treatment of the Wiskott–Aldrich syndrome. Current Opinion in Hematology, 2011, 18, 42-48.	1.2	93
48	Hyper IgM Syndrome: a Report from the USIDNET Registry. Journal of Clinical Immunology, 2016, 36, 490-501.	2.0	92
49	Mutations of the humanBTK gene coding for bruton tyrosine kinase in X-linked agammaglobulinemia. , 1999, 13, 280-285.		91
50	Severe systemic lupus erythematosus with nephritis in a boy with deficiency of the fourth component of complement. Arthritis and Rheumatism, 1977, 20, 1519-1525.	6.7	88
51	Hyper IgE syndromes: clinical and molecular characteristics. Immunology and Cell Biology, 2019, 97, 368-379.	1.0	88
52	Excellent outcomes following hematopoietic cell transplantation for Wiskott-Aldrich syndrome: a PIDTC report. Blood, 2020, 135, 2094-2105.	0.6	87
53	Bruton's tyrosine kinase is present in normal platelets and its absence identifies patients with X-linked agammaglobulinaemia and carrier females. British Journal of Haematology, 2001, 114, 141-149.	1.2	82
54	The Role of CD40 and its Ligand in the Regulation of the Immune Response. Immunological Reviews, 1994, 138, 23-37.	2.8	80

#	Article	IF	CITATIONS
55	Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nature Communications, 2022, 13, 1220.	5.8	74
56	Rubella persistence in epidermal keratinocytes and granuloma M2 macrophages in patients with primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2016, 138, 1436-1439.e11.	1.5	73
57	Progressive Neurodegeneration in Patients with Primary Immunodeficiency Disease on IVIG Treatment. Clinical Immunology, 2002, 102, 19-24.	1.4	70
58	Activation-Induced Cytidine Deaminase Expression in Human B Cell Precursors Is Essential for Central B Cell Tolerance. Immunity, 2015, 43, 884-895.	6.6	69
59	Primary Immune Deficiency Treatment Consortium (PIDTC) report. Journal of Allergy and Clinical Immunology, 2014, 133, 335-347.e11.	1.5	65
60	Autosomal Dominant Hyper-IgE Syndrome in the USIDNET Registry. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 996-1001.	2.0	62
61	Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome: A systematic review. Autoimmunity Reviews, 2020, 19, 102526.	2.5	61
62	A Novel Gain-of-Function IKBA Mutation Underlies Ectodermal Dysplasia with Immunodeficiency and Polyendocrinopathy. Journal of Clinical Immunology, 2013, 33, 1088-1099.	2.0	60
63	Wiskott—Aldrich Syndrome: a model for defective actin reorganization, cell trafficking and synapse formation. Current Opinion in Immunology, 2003, 15, 585-591.	2.4	59
64	Mutations of the Wiskott–Aldrich Syndrome Protein affect protein expression and dictate the clinical phenotypes. Immunologic Research, 2009, 44, 84-88.	1.3	58
65	The Wiskott-Aldrich Syndrome Protein Regulates Nuclear Translocation of NFAT2 and NF-ήB (RelA) Independently of Its Role in Filamentous Actin Polymerization and Actin Cytoskeletal Rearrangement. Journal of Immunology, 2005, 174, 2602-2611.	0.4	57
66	Rubella Virus-Associated Cutaneous Granulomatous Disease: a Unique Complication in Immune-Deficient Patients, Not Limited to DNA Repair Disorders. Journal of Clinical Immunology, 2019, 39, 81-89.	2.0	56
67	Autoimmunity in common variable immunodeficiency: epidemiology, pathophysiology and management. Expert Review of Clinical Immunology, 2017, 13, 101-115.	1.3	55
68	Targeting FcRn for immunomodulation: Benefits, risks, and practical considerations. Journal of Allergy and Clinical Immunology, 2020, 146, 479-491.e5.	1.5	52
69	Quantity does not equal quality: Scientific principles cannot be sacrificed. International Immunopharmacology, 2020, 86, 106711.	1.7	52
70	Developmental changes of FOXP3-expressing CD4+CD25+ regulatory T cells and their impairment in patients with FOXP3 gene mutations. Clinical Immunology, 2007, 125, 237-246.	1.4	51
71	The Wiskott-Aldrich Syndrome. Clinical Reviews in Allergy and Immunology, 2001, 20, 61-86.	2.9	50
72	History of primary immunodeficiency diseases. Current Opinion in Allergy and Clinical Immunology, 2012, 12, 577-587.	1.1	47

#	Article	IF	CITATIONS
73	Suppression by human FOXP3 ⁺ regulatory T cells requires FOXP3-TIP60 interactions. Science Immunology, 2017, 2, .	5.6	47
74	Rapid Multiplexed Proteomic Screening for Primary Immunodeficiency Disorders From Dried Blood Spots. Frontiers in Immunology, 2018, 9, 2756.	2.2	43
75	Primary Immunodeficiency Diseases Associated with Neurologic Manifestations. Journal of Clinical Immunology, 2012, 32, 1-24.	2.0	42
76	Structure and function of the Wiskott-Aldrich syndrome protein. Current Opinion in Hematology, 2005, 12, 284-291.	1.2	41
77	Heterozygous signal transducer and activator of transcription 3 mutations in hyper-IgE syndrome result in altered B-cell maturation. Journal of Allergy and Clinical Immunology, 2012, 129, 559-562.e2.	1.5	41
78	FOXP3 Inhibits Activation-Induced NFAT2 Expression in T Cells Thereby Limiting Effector Cytokine Expression. Journal of Immunology, 2009, 183, 907-915.	0.4	37
79	Comparison of Common Monogenic Defects in a Large Predominantly Antibody Deficiency Cohort. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 864-878.e9.	2.0	37
80	The T-cell-dependent antibody response assay in nonclinical studies of pharmaceuticals and chemicals: Study design, data analysis, interpretation. Regulatory Toxicology and Pharmacology, 2014, 69, 7-21.	1.3	36
81	Missense mutations affecting a conserved cysteine pair in the TH domain of Btk. FEBS Letters, 1997, 413, 205-210.	1.3	35
82	The Wiskott-Aldrich syndrome. Seminars in Immunopathology, 1998, 19, 435-458.	4.0	35
83	WASP is involved in proliferation and differentiation of human haemopoietic progenitors in vitro. British Journal of Haematology, 1999, 107, 254-262.	1.2	33
84	WASP and the phenotypic range associated with deficiency. Current Opinion in Allergy and Clinical Immunology, 2005, 5, 485-490.	1.1	33
85	Home Self-Administration of Intravenous Immunoglobulin Therapy in Children. Pediatrics, 1990, 85, 705-709.	1.0	33
86	Classification of mutations in the human CD40 ligand, gp39, that are associated with Xâ€ŀinked hyper IgM syndrome. Protein Science, 1996, 5, 531-534.	3.1	32
87	Wiskott-Aldrich syndrome protein and platelets. Immunological Reviews, 2000, 178, 111-117.	2.8	32
88	CD40 ligand deficiency: treatment strategies and novel therapeutic perspectives. Expert Review of Clinical Immunology, 2019, 15, 529-540.	1.3	32
89	Mutations of the CD40 ligand gene in 13 Japanese patients with X-linked hyper-lgM syndrome. Human Genetics, 1997, 99, 624-627.	1.8	31
90	Successful hematopoietic cell transplantation in a patient with Xâ€linked agammaglobulinemia and acute myeloid leukemia. Pediatric Blood and Cancer. 2015, 62, 1674-1676	0.8	30

#	Article	IF	CITATIONS
91	Iron Deficiency in the Rat: Effects on Neutrophil Activation and Metabolism. Pediatric Research, 1984, 18, 549-551.	1.1	29
92	Efficacy, Pharmacokinetics, Safety, and Tolerability of Flebogamma® 10% DIF, a High-Purity Human Intravenous Immunoglobulin, in Primary Immunodeficiency. Journal of Clinical Immunology, 2010, 30, 321-329.	2.0	29
93	Flow Cytometry Contributions for the Diagnosis and Immunopathological Characterization of Primary Immunodeficiency Diseases With Immune Dysregulation. Frontiers in Immunology, 2019, 10, 2742.	2.2	28
94	The Wiskott-Aldrich syndrome. Israel Medical Association Journal, 2002, 4, 379-84.	0.1	28
95	Human CD40 ligand deficiency dysregulates the macrophage transcriptome causing functional defects that are improved by exogenous IFN-13. Journal of Allergy and Clinical Immunology, 2017, 139, 900-912.e7.	1.5	27
96	Severe COVID-19 Shares a Common Neutrophil Activation Signature with Other Acute Inflammatory States. Cells, 2022, 11, 847.	1.8	27
97	Effect of Therapeutic Integrin (CD11a) Blockade with Efalizumab on Immune Responses to Model Antigens in Humans: Results of a Randomized, Single Blind Study. Journal of Investigative Dermatology, 2008, 128, 2615-2624.	0.3	25
98	Hematopoietic Stem Cell Transplantation for X-Linked Thrombocytopenia With Mutations in the WAS gene. Journal of Clinical Immunology, 2015, 35, 15-21.	2.0	25
99	X-linked immunodeficiencies. Current Allergy and Asthma Reports, 2004, 4, 339-348.	2.4	22
100	Quantitative analysis of tissue inflammation and responses to treatment in immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, and review of literature. Journal of Microbiology, Immunology and Infection, 2016, 49, 775-782.	1.5	21
101	CD40 ligand deficiency causes functional defects of peripheral neutrophils that are improved by exogenous IFN-Î ³ . Journal of Allergy and Clinical Immunology, 2018, 142, 1571-1588.e9.	1.5	21
102	CD40 Ligand Mutants Responsible for X-linked Hyper-IgM Syndrome Associate with Wild Type CD40 Ligand. Journal of Biological Chemistry, 1999, 274, 11310-11320.	1.6	21
103	Immune Deficiency in SCID Mice. International Reviews of Immunology, 1996, 13, 289-300.	1.5	19
104	Absence of functional fetal regulatory T cells in humans causes in utero organ-specific autoimmunity. Journal of Allergy and Clinical Immunology, 2017, 140, 616-619.e7.	1.5	18
105	The relationship between cytokine and neutrophil gene network distinguishes SARS-CoV-2–infected patients by sex and age. JCl Insight, 2021, 6, .	2.3	17
106	Pharmacokinetics of a novel human intravenous immunoglobulin 10% in patients with primary immunodeficiency diseases: Analysis of a phase III, multicentre, prospective, open-label study. European Journal of Pharmaceutical Sciences, 2018, 118, 80-86.	1.9	16
107	Diminished expression of CD40 ligand may contribute to the defective humoral immunity in patients with MHC class II deficiency. European Journal of Immunology, 1998, 28, 589-598.	1.6	14
108	Subcutaneous Immunoglobulin Replacement Therapy with Hizentra® is Safe and Effective in Children Less Than 5 Years of Age. Journal of Clinical Immunology, 2015, 35, 558-565.	2.0	13

#	Article	IF	CITATIONS
109	DOCK8 and STAT3 dependent inhibition of IgE isotype switching by TLR9 ligation in human B cells. Clinical Immunology, 2017, 183, 263-265.	1.4	13
110	Current Perspectives and Unmet Needs of Primary Immunodeficiency Care in Asia Pacific. Frontiers in Immunology, 2020, 11, 1605.	2.2	13
111	Efficacy and Safety of Human Intravenous Immunoglobulin 10% (Panzyga®) in Patients with Primary Immunodeficiency Diseases: a Two-Stage, Multicenter, Prospective, Open-Label Study. Journal of Clinical Immunology, 2017, 37, 603-612.	2.0	12
112	From clinical observations and molecular dissection to novel therapeutic strategies for primary immunodeficiency disorders. , 2018, 176, 784-803.		12
113	Hematopoietic Stem Cell Therapy for Wiskott–Aldrich Syndrome: Improved Outcome and Quality of Life. Journal of Blood Medicine, 2021, Volume 12, 435-447.	0.7	12
114	Pathogen-Specific Humoral Immunity and Infections in B Cell Maturation Antigen-Directed Chimeric Antigen Receptor T Cell Therapy Recipients with Multiple Myeloma. Transplantation and Cellular Therapy, 2022, 28, 304.e1-304.e9.	0.6	12
115	Inheritance and genetic linkage of transcobalamin II. Human Genetics, 1981, 57, 307-11.	1.8	11
116	Ambrisentan, an endothelin receptor type A-selective antagonist, inhibits cancer cell migration, invasion, and metastasis. Scientific Reports, 2020, 10, 15931.	1.6	11
117	Chronic Granulomatous Disease With Inflammatory Bowel Disease: Clinical Presentation, Treatment, and Outcomes From the USIDNET Registry. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1325-1333.e5.	2.0	11
118	X-Linked Agammaglobulinemia: Infection Frequency and Infection-Related Mortality in the USIDNET Registry. Journal of Clinical Immunology, 2022, 42, 827-836.	2.0	11
119	The clinical, molecular, and therapeutic features of patients with IL10/IL10R deficiency: a systematic review. Clinical and Experimental Immunology, 2022, 208, 281-291.	1.1	11
120	Dried Blood Spots, an Affordable Tool to Collect, Ship, and Sequence gDNA from Patients with an X-Linked Agammaglobulinemia Phenotype Residing in a Developing Country. Frontiers in Immunology, 2018, 9, 289.	2.2	10
121	Intravenous immunoglobulin 10% in children with primary immunodeficiency diseases. Immunotherapy, 2018, 10, 1193-1202.	1.0	10
122	Two Unique Cases of X-linked SCID: A Diagnostic Challenge in the Era of Newborn Screening. Frontiers in Pediatrics, 2019, 7, 55.	0.9	10
123	Homozygous Splice ADA2 Gene Mutation Causing ADA-2 Deficiency. Journal of Clinical Immunology, 2019, 39, 842-845.	2.0	9
124	A new RFLP marker, SP282, at thebtk locus for genetic analysis in X-linked agammaglobulinaemia families. Prenatal Diagnosis, 1994, 14, 493-496.	1.1	7
125	Patients with abnormal IgM levels: assessment, clinical interpretation, and treatment. Annals of Allergy, Asthma and Immunology, 2008, 100, 509-511.	0.5	7
126	An Emerging Era of Clinical Benefit From Gene Therapy. JAMA - Journal of the American Medical Association, 2015, 313, 1522.	3.8	7

#	Article	IF	CITATIONS
127	Diagnosis and clinical management of Wiskott–Aldrich syndrome: current and emerging techniques. Expert Review of Clinical Immunology, 2022, 18, 609-623.	1.3	7
128	Paternal gonadal mosaicism as cause of a puzzling inheritance pattern of activated PI3-kinase delta syndrome. Annals of Allergy, Asthma and Immunology, 2017, 119, 564-566.	0.5	6
129	Class Switch Recombination Defects: impact on B cell maturation and antibody responses. Clinical Immunology, 2021, 222, 108638.	1.4	6
130	A Short Burst of Oral Corticosteroid for Children with Acute Asthma: Is There an Impact on Immunity?. Pediatric, Allergy, Immunology, and Pulmonology, 2010, 23, 243-252.	0.3	5
131	Analysis of somatic hypermutations in the IgM switch region in human B cells. Journal of Allergy and Clinical Immunology, 2014, 134, 411-419.e1.	1.5	5
132	The network interplay of interferon and Toll-like receptor signaling pathways in the anti-Candida immune response. Scientific Reports, 2021, 11, 20281.	1.6	5
133	Soluble molecules in intravenous immunoglobulin: benefits and limitations. Expert Review of Clinical Immunology, 2016, 12, 99-101.	1.3	3
134	The coâ€occurrence of Wilson disease and Xâ€linked agammaglobulinemia in one family highlights the promising diagnostic potential of proteolytic analysis. Molecular Genetics & Genomic Medicine, 2020, 8, e1172.	0.6	3
135	Coronavirus: Pure Infectious Disease or Genetic Predisposition. Advances in Experimental Medicine and Biology, 2021, 1318, 91-107.	0.8	3
136	CD40L modulates transcriptional signatures of neutrophils in the bone marrow associated with development and trafficking. JCI Insight, 2021, 6, .	2.3	3
137	Lazy Leukocyte Syndrome—an Enigma Finally Solved?. Journal of Clinical Immunology, 2020, 40, 9-12.	2.0	2
138	CD40 Ligand Deficiency in Latin America: Clinical, Immunological, and Genetic Characteristics. Journal of Clinical Immunology, 2022, 42, 514-526.	2.0	2
139	Agammaglobulinemia: comorbidities and long-term therapeutic risks. Expert Opinion on Orphan Drugs, 2017, 5, 559-574.	0.5	1
140	Postgrafting Immune Suppression Combined with Nonmyeloablative Conditioning for Transplantation of HLA-Identical Hematopoietic Cell Grafts: Results of a Phase I Study for Treatment of Immunodeficiency Disorders Blood, 2005, 106, 327-327.	0.6	1
141	A 71-year-old man with recurrent pulmonary mycobacterial avium complex infections and lymphopenia. Allergy and Asthma Proceedings, 2020, 41, 66-69.	1.0	1
142	Combined Immunodeficiencies With Syndromic Features. , 2021, , .		1
143	Immunologic Disorders: The Regulation of Humoral Immunity. Vox Sanguinis, 1986, 51, 14-17.	0.7	0
144	Ralph Josiah Patrick Wedgwood (1924–2017). Journal of Clinical Immunology, 2018, 38, 153-154.	2.0	0

#	Article	IF	CITATIONS
145	Combined immunodeficiencies with associated or syndromic features. , 2021, , 41-91.		Ο
146	ADA deficiency,immunologic and biochemical abnormalities, treatment Japanese Journal of Clinical Immunology, 1990, 13, 411-416.	0.0	0
147	The SCID mouse, a model for human diseases Japanese Journal of Clinical Immunology, 1990, 13, 423-427.	0.0	0