
Cees Dekker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/609258/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Condensin extrudes DNA loops in steps up to hundreds of base pairs that are generated by ATP binding events. Nucleic Acids Research, 2022, 50, 820-832.	14.5	29
2	CRISPR-dCas9 based DNA detection scheme for diagnostics in resource-limited settings. Nanoscale, 2022, 14, 1885-1895.	5.6	12
3	High-resolution imaging of bacterial spatial organization with vertical cell imaging by nanostructured immobilization (VerCINI). Nature Protocols, 2022, 17, 847-869.	12.0	8
4	Voices on technology: The molecular biologists' ever-expanding toy box. Molecular Cell, 2022, 82, 221-226.	9.7	0
5	Single-Molecule Ionic andÂOptical Sensing withÂNanoapertures. Nanostructure Science and Technology, 2022, , 367-387.	0.1	3
6	The archaeal division protein CdvB1 assembles into polymers that are depolymerized by CdvC. FEBS Letters, 2022, 596, 958-969.	2.8	7
7	CENP-B-mediated DNA loops regulate activity and stability of human centromeres. Molecular Cell, 2022, 82, 1751-1767.e8.	9.7	27
8	Probing nanomotion of single bacteria with graphene drums. Nature Nanotechnology, 2022, 17, 637-642.	31.5	30
9	ParB proteins can bypass DNA-bound roadblocks via dimer-dimer recruitment. Science Advances, 2022, 8, .	10.3	25
10	Condensin-driven loop extrusion on supercoiled DNA. Nature Structural and Molecular Biology, 2022, 29, 719-727.	8.2	21
11	Transport receptor occupancy in nuclear pore complex mimics. Nano Research, 2022, 15, 9689-9703.	10.4	12
12	Translocation of DNA through Ultrathin Nanoslits. Advanced Materials, 2021, 33, e2007682.	21.0	22
13	Bridging-induced phase separation induced by cohesin SMC protein complexes. Science Advances, 2021, 7, .	10.3	95
14	Palladium zero-mode waveguides for optical single-molecule detection with nanopores. Nanotechnology, 2021, 32, 18LT01.	2.6	24
15	A designer FG-Nup that reconstitutes the selective transport barrier of the nuclear pore complex. Nature Communications, 2021, 12, 2010.	12.8	35
16	Nanopores: a versatile tool to study protein dynamics. Essays in Biochemistry, 2021, 65, 93-107.	4.7	25
17	FtsZ treadmilling is essential for Z-ring condensation and septal constriction initiation in Bacillus subtilis cell division. Nature Communications, 2021, 12, 2448.	12.8	53
18	Studying phase separation in confinement. Current Opinion in Colloid and Interface Science, 2021, 52, 101419	7.4	18

#	Article	IF	CITATIONS
19	DNA sequence-directed cooperation between nucleoid-associated proteins. IScience, 2021, 24, 102408.	4.1	12
20	AutoStepfinder: A fast and automated step detection method for single-molecule analysis. Patterns, 2021, 2, 100256.	5.9	29
21	Mechanisms for Chromosome Segregation in Bacteria. Frontiers in Microbiology, 2021, 12, 685687.	3.5	19
22	Reconstitution of Ultrawide DNA Origami Pores in Liposomes for Transmembrane Transport of Macromolecules. ACS Nano, 2021, 15, 12768-12779.	14.6	44
23	Optimized cDICE for Efficient Reconstitution of Biological Systems in Giant Unilamellar Vesicles. ACS Synthetic Biology, 2021, 10, 1690-1702.	3.8	44
24	The emerging landscape of single-molecule protein sequencing technologies. Nature Methods, 2021, 18, 604-617.	19.0	198
25	Diagnosing point-of-care diagnostics for neglected tropical diseases. PLoS Neglected Tropical Diseases, 2021, 15, e0009405.	3.0	26
26	Bulk-surface coupling identifies the mechanistic connection between Min-protein patterns in vivo and in vitro. Nature Communications, 2021, 12, 3312.	12.8	26
27	Towards a synthetic cell cycle. Nature Communications, 2021, 12, 4531.	12.8	53
28	Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations. Nature Nanotechnology, 2021, 16, 1244-1250.	31.5	67
29	The NEOtrap – en route with a new single-molecule technique. IScience, 2021, 24, 103007.	4.1	7
30	Genome-in-a-Box: Building a Chromosome from the Bottom Up. ACS Nano, 2021, 15, 111-124.	14.6	16
31	Simultaneous orientation and 3D localization microscopy with a Vortex point spread function. Nature Communications, 2021, 12, 5934.	12.8	39
32	FIB-milled plasmonic nanoapertures allow for long trapping times of individual proteins. IScience, 2021, 24, 103237.	4.1	13
33	Multiple rereads of single proteins at single–amino acid resolution using nanopores. Science, 2021, 374, 1509-1513.	12.6	222
34	The condensin holocomplex cycles dynamically between open and collapsed states. Nature Structural and Molecular Biology, 2020, 27, 1134-1141.	8.2	59
35	A Mechanically Tunable Quantum Dot in a Graphene Break Junction. Nano Letters, 2020, 20, 4924-4931.	9.1	9
36	Direct observation of independently moving replisomes in Escherichia coli. Nature Communications, 2020, 11, 3109.	12.8	33

#	Article	IF	CITATIONS
37	Interplay between Confinement and Drag Forces Determine the Fate of Amyloid Fibrils. Physical Review Letters, 2020, 124, 118102.	7.8	0
38	pH-Controlled Coacervate–Membrane Interactions within Liposomes. ACS Nano, 2020, 14, 4487-4498.	14.6	94
39	DNA-loop extruding condensin complexes can traverse one another. Nature, 2020, 579, 438-442.	27.8	108
40	Comparing Current Noise in Biological and Solid-State Nanopores. ACS Nano, 2020, 14, 1338-1349.	14.6	119
41	Single-molecule Protein Sequencing using Biological Nanopores. Biophysical Journal, 2020, 118, 163a.	0.5	1
42	A Designer FG-Nup that Reconstitutes the Selective Transport Barrier of the Nuclear Pore Complex. Biophysical Journal, 2020, 118, 341a-342a.	0.5	2
43	Membrane Tension–Mediated Growth of Liposomes. Small, 2019, 15, e1902898.	10.0	45
44	1/ <i>f</i> noise in solid-state nanopores is governed by access and surface regions. Nanotechnology, 2019, 30, 395202.	2.6	48
45	Distinct Roles for Condensin's Two ATPase Sites in Chromosome Condensation. Molecular Cell, 2019, 76, 724-737.e5.	9.7	39
46	Label-Free Detection of Post-translational Modifications with a Nanopore. Nano Letters, 2019, 19, 7957-7964.	9.1	88
47	Resolving Chemical Modifications to a Single Amino Acid within a Peptide Using a Biological Nanopore. ACS Nano, 2019, 13, 13668-13676.	14.6	76
48	Nanoâ€Optical Tweezing of Single Proteins in Plasmonic Nanopores. Small Methods, 2019, 3, 1800465.	8.6	67
49	A microfluidic platform for the characterisation of membrane active antimicrobials. Lab on A Chip, 2019, 19, 837-844.	6.0	46
50	Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate. ACS Nano, 2019, 13, 2398-2409.	14.6	16
51	Cell Boundary Confinement Sets the Size and Position of the E.Âcoli Chromosome. Current Biology, 2019, 29, 2131-2144.e4.	3.9	47
52	Shape and Size Control of Artificial Cells for Bottom-Up Biology. ACS Nano, 2019, 13, 5439-5450.	14.6	68
53	Visualization of unstained DNA nanostructures with advanced in-focus phase contrast TEM techniques. Scientific Reports, 2019, 9, 7218.	3.3	10
54	Bacteriaâ€inâ€paper, a versatile platform to study bacterial ecology. Ecology Letters, 2019, 22, 1316-1323.	6.4	6

#	Article	IF	CITATIONS
55	Direct imaging of the circular chromosome in a live bacterium. Nature Communications, 2019, 10, 2194.	12.8	48
56	An Integrated Microfluidic Platform for Quantifying Drug Permeation across Biomimetic Vesicle Membranes. Molecular Pharmaceutics, 2019, 16, 2494-2501.	4.6	36
57	Spatiotemporal control of coacervate formation within liposomes. Nature Communications, 2019, 10, 1800.	12.8	149
58	Movement dynamics of divisome proteins and PBP2x:FtsW in cells of <i>Streptococcus pneumoniae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3211-3220.	7.1	107
59	Single-Molecule Protein Fingerprinting using Nanopores. Biophysical Journal, 2019, 116, 316a.	0.5	1
60	High Bandwidth Sensing of Single Protein Dynamics using Nanopores and DNA Origami. Biophysical Journal, 2019, 116, 341a-342a.	0.5	1
61	Label-Free Optical Detection of DNA Translocations through Plasmonic Nanopores. ACS Nano, 2019, 13, 61-70.	14.6	107
62	Intercalating Electron Dyes for TEM Visualization of DNA at the Singleâ€Molecule Level. ChemBioChem, 2019, 20, 822-830.	2.6	5
63	Synthetic life on a chip. Emerging Topics in Life Sciences, 2019, 3, 559-566.	2.6	10
64	Real-time imaging of DNA loop extrusion by condensin. Science, 2018, 360, 102-105.	12.6	624
65	Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore. ACS Nano, 2018, 12, 2623-2633.	14.6	98
66	DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex. Nature Communications, 2018, 9, 902.	12.8	109
67	Reversible Immobilization of Proteins in Sensors and Solidâ€State Nanopores. Small, 2018, 14, e1703357.	10.0	30
68	Mechanical Division of Cell-Sized Liposomes. ACS Nano, 2018, 12, 2560-2568.	14.6	87
69	Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes. Nanotechnology, 2018, 29, 145302.	2.6	64
70	Integrating Subâ€3 nm Plasmonic Gaps into Solidâ€State Nanopores. Small, 2018, 14, e1703307.	10.0	31
71	Direct observation of end resection by RecBCD during double-stranded DNA break repair in vivo. Nucleic Acids Research, 2018, 46, 1821-1833.	14.5	26
72	On-chip microfluidic production of cell-sized liposomes. Nature Protocols, 2018, 13, 856-874.	12.0	111

#	Article	IF	CITATIONS
73	Double Barrel Nanopores as a New Tool for Controlling Single-Molecule Transport. Nano Letters, 2018, 18, 2738-2745.	9.1	66
74	Active Delivery of Single DNA Molecules into a Plasmonic Nanopore for Label-Free Optical Sensing. Nano Letters, 2018, 18, 8003-8010.	9.1	65
75	Mechanically controlled quantum interference in graphene break junctions. Nature Nanotechnology, 2018, 13, 1126-1131.	31.5	73
76	Detection of CRISPR-dCas9 on DNA with Solid-State Nanopores. Nano Letters, 2018, 18, 6469-6474.	9.1	83
77	Paving the way to single-molecule protein sequencing. Nature Nanotechnology, 2018, 13, 786-796.	31.5	292
78	How we made the carbon nanotube transistor. Nature Electronics, 2018, 1, 518-518.	26.0	17
79	Spatial structure of disordered proteins dictates conductance and selectivity in nuclear pore complex mimics. ELife, 2018, 7, .	6.0	37
80	Dividing the Archaeal Way: The Ancient Cdv Cell-Division Machinery. Frontiers in Microbiology, 2018, 9, 174.	3.5	56
81	FtsZâ€Induced Shape Transformation of Coacervates. Advanced Biology, 2018, 2, 1800136.	3.0	23
82	Tailoring the appearance: what will synthetic cells look like?. Current Opinion in Biotechnology, 2018, 51, 47-56.	6.6	82
83	DNA sequence encodes the position of DNA supercoils. ELife, 2018, 7, .	6.0	64
84	The supercoiling state of DNA determines the handedness of both H3 and CENP-A nucleosomes. Nanoscale, 2017, 9, 1862-1870.	5.6	20
85	Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science, 2017, 355, 739-743.	12.6	503
86	Human centromeric CENP-A chromatin is a homotypic, octameric nucleosome at all cell cycle points. Journal of Cell Biology, 2017, 216, 607-621.	5.2	53
87	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	14.6	4
88	Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively. Nucleic Acids Research, 2017, 45, 4687-4695.	14.5	4
89	Distortion of DNA Origami on Graphene Imaged with Advanced TEM Techniques. Small, 2017, 13, 1700876.	10.0	19
90	On-chip density-based purification of liposomes. Biomicrofluidics, 2017, 11, 034106.	2.4	24

#	Article	IF	CITATIONS
91	The condensin complex is a mechanochemical motor that translocates along DNA. Science, 2017, 358, 672-676.	12.6	266
92	SDS-assisted protein transport through solid-state nanopores. Nanoscale, 2017, 9, 11685-11693.	5.6	67
93	Through-membrane electron-beam lithography for ultrathin membrane applications. Applied Physics Letters, 2017, 111, .	3.3	11
94	Catching DNA with hoops—biophysical approaches to clarify the mechanism of SMC proteins. Nature Structural and Molecular Biology, 2017, 24, 1012-1020.	8.2	10
95	Realâ€ŧime detection of condensinâ€driven <scp>DNA</scp> compaction reveals a multistep binding mechanism. EMBO Journal, 2017, 36, 3448-3457.	7.8	71
96	Multistability and dynamic transitions of intracellular Min protein patterns. Molecular Systems Biology, 2016, 12, 873.	7.2	54
97	CRISPR-mediated control of the bacterial initiation of replication. Nucleic Acids Research, 2016, 44, 3801-3810.	14.5	41
98	A Microfluidic Platform to Produce and Manipulate Liposomes - Towards Synthetic Cells on Chip. Biophysical Journal, 2016, 110, 17a.	0.5	0
99	Direct observation of DNA knots using a solid-state nanopore. Nature Nanotechnology, 2016, 11, 1093-1097.	31.5	214
100	Mechanical Trapping of DNA in a Double-Nanopore System. Nano Letters, 2016, 16, 8021-8028.	9.1	68
101	Condensin Smc2-Smc4 Dimers Are Flexible and Dynamic. Cell Reports, 2016, 14, 1813-1818.	6.4	79
102	Intercalation-Based Single-Molecule Fluorescence Assay To Study DNA Supercoil Dynamics. Nano Letters, 2016, 16, 4699-4707.	9.1	52
103	Octanol-assisted liposome assembly on chip. Nature Communications, 2016, 7, 10447.	12.8	269
104	Bacterial predator–prey dynamics in microscale patchy landscapes. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152154.	2.6	46
105	Bacterial Cell Cycle Control by Modified CRISPR Binding. Biophysical Journal, 2016, 110, 62a.	O.5	0
106	Graphene nanodevices for DNA sequencing. Nature Nanotechnology, 2016, 11, 127-136.	31.5	506
107	New technologies for DNA analysis – a review of the READNA Project. New Biotechnology, 2016, 33, 311-330.	4.4	10
108	Nanofabricated structures and microfluidic devices for bacteria: from techniques to biology. Chemical Society Reviews, 2016, 45, 268-280.	38.1	71

#	Article	IF	CITATIONS
109	Density-dependent adaptive resistance allows swimming bacteria to colonize an antibiotic gradient. ISME Journal, 2016, 10, 30-38.	9.8	41
110	CENP-A and H3 Nucleosomes Display a Similar Stability to Force-Mediated Disassembly. PLoS ONE, 2016, 11, e0165078.	2.5	18
111	Mapping out Min protein patterns in fully confined fluidic chambers. ELife, 2016, 5, .	6.0	59
112	Copper-free click chemistry for attachment of biomolecules in magnetic tweezers. BMC Biophysics, 2015, 8, 9.	4.4	40
113	Single-molecule sensing with nanopores. Physics Today, 2015, 68, 40-46.	0.3	63
114	Multi-color imaging of the bacterial nucleoid and division proteins with blue, orange, and near-infrared fluorescent proteins. Frontiers in Microbiology, 2015, 6, 607.	3.5	32
115	Comparing the Assembly and Handedness Dynamics of (H3.3-H4)2 Tetrasomes to Canonical Tetrasomes. PLoS ONE, 2015, 10, e0141267.	2.5	13
116	Counterintuitive DNA Sequence Dependence in Supercoiling-Induced DNA Melting. PLoS ONE, 2015, 10, e0141576.	2.5	25
117	Temperature dependence of DNA translocations through solid-state nanopores. Nanotechnology, 2015, 26, 234004.	2.6	38
118	Photoresistance Switching of Plasmonic Nanopores. Nano Letters, 2015, 15, 776-782.	9.1	38
119	Velocity of DNA during Translocation through a Solid-State Nanopore. Nano Letters, 2015, 15, 732-737.	9.1	98
120	1/f noise in graphene nanopores. Nanotechnology, 2015, 26, 074001.	2.6	100
121	Nucleosome Assembly Dynamics Involve Spontaneous Fluctuations in the Handedness of Tetrasomes. Cell Reports, 2015, 10, 216-225.	6.4	48
122	Experimental phase diagram of negatively supercoiled DNA measured by magnetic tweezers and fluorescence. Nanoscale, 2015, 7, 3205-3216.	5.6	25
123	Data analysis methods for solid-state nanopores. Nanotechnology, 2015, 26, 084003.	2.6	126
124	Two Distinct DNA Binding Modes Guide Dual Roles of a CRISPR-Cas Protein Complex. Molecular Cell, 2015, 58, 60-70.	9.7	100
125	DNA nanopore translocation in glutamate solutions. Nanoscale, 2015, 7, 13605-13609.	5.6	18
126	Symmetry and scale orient Min protein patterns in shaped bacterial sculptures. Nature Nanotechnology, 2015, 10, 719-726.	31.5	90

#	Article	IF	CITATIONS
127	Controlling Defects in Graphene for Optimizing the Electrical Properties of Graphene Nanodevices. ACS Nano, 2015, 9, 3428-3435.	14.6	220
128	Detection of Individual Proteins Bound along DNA Using Solid-State Nanopores. Nano Letters, 2015, 15, 3153-3158.	9.1	122
129	Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA. ACS Nano, 2015, 9, 10598-10611.	14.6	148
130	The idiosyncrasy of spatial structure in bacterial competition. BMC Research Notes, 2015, 8, 245.	1.4	36
131	Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown. Nano Letters, 2015, 15, 7112-7117.	9.1	61
132	Dynamics of Nucleosomal Structures Measured by High-Speed Atomic Force Microscopy. Small, 2015, 11, 976-984.	10.0	34
133	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	5.6	2,452
134	Nutrient-responsive regulation determines biodiversity in a colicin-mediated bacterial community. BMC Biology, 2014, 12, 68.	3.8	42
135	Skewed Brownian Fluctuations in Single-Molecule Magnetic Tweezers. PLoS ONE, 2014, 9, e108271.	2.5	10
136	Zooming in to see the bigger picture: Microfluidic and nanofabrication tools to study bacteria. Science, 2014, 346, 1251821.	12.6	165
137	DNA Translocations through Solid-State Plasmonic Nanopores. Nano Letters, 2014, 14, 6917-6925.	9.1	133
138	Systems and synthetic biology approaches to cell division. Systems and Synthetic Biology, 2014, 8, 173-178.	1.0	5
139	Ionic Permeability and Mechanical Properties of DNA Origami Nanoplates on Solid-State Nanopores. ACS Nano, 2014, 8, 35-43.	14.6	78
140	A Simple Self-Calibrating Method To Measure the Height of Fluorescent Molecules and Beads at Nanoscale Resolution. Nano Letters, 2014, 14, 4469-4475.	9.1	3
141	Divided we stand: splitting synthetic cells for their proliferation. Systems and Synthetic Biology, 2014, 8, 249-269.	1.0	43
142	Fast Translocation of Proteins through Solid State Nanopores. Nano Letters, 2013, 13, 658-663.	9.1	316
143	Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation. Nature Communications, 2013, 4, 2619.	12.8	171
144	Periodic Modulations of Optical Tweezers Near Solid‧tate Membranes. Small, 2013, 9, 679-684.	10.0	6

#	Article	IF	CITATIONS
145	Plasmonic Nanopore for Electrical Profiling of Optical Intensity Landscapes. Nano Letters, 2013, 13, 1029-1033.	9.1	91
146	Controllable Atomic Scale Patterning of Freestanding Monolayer Graphene at Elevated Temperature. ACS Nano, 2013, 7, 1566-1572.	14.6	104
147	Non-equilibrium folding of individual DNA molecules recaptured up to 1000 times in a solid state nanopore. Nanotechnology, 2013, 24, 475101.	2.6	33
148	Scanning a DNA Molecule for Bound Proteins Using Hybrid Magnetic and Optical Tweezers. PLoS ONE, 2013, 8, e65329.	2.5	18
149	Spatial Structure Facilitates Cooperation in a Social Dilemma: Empirical Evidence from a Bacterial Community. PLoS ONE, 2013, 8, e77042.	2.5	66
150	Detection of Nucleosomal Substructures using Solid-State Nanopores. Nano Letters, 2012, 12, 3180-3186.	9.1	63
151	Recent Advances in Magnetic Tweezers. Annual Review of Biophysics, 2012, 41, 453-472.	10.0	318
152	Mechanism of Homology Recognition in DNA Recombination from Dual-Molecule Experiments. Molecular Cell, 2012, 46, 616-624.	9.7	92
153	Formation and control of wrinkles in graphene by the wedging transfer method. Applied Physics Letters, 2012, 101, .	3.3	116
154	Non-Bias-Limited Tracking of Spherical Particles, Enabling Nanometer Resolution at Low Magnification. Biophysical Journal, 2012, 102, 2362-2371.	0.5	92
155	Measuring Single-Wall Carbon Nanotubes with Solid-State Nanopores. Methods in Molecular Biology, 2012, 870, 227-239.	0.9	3
156	Measurement of the Docking Time of a DNA Molecule onto a Solid-State Nanopore. Nano Letters, 2012, 12, 4159-4163.	9.1	56
157	Slowing down DNA Translocation through a Nanopore in Lithium Chloride. Nano Letters, 2012, 12, 1038-1044.	9.1	343
158	Translocation of DNA-Protein Complexes through Solid-State Nanopores. Biophysical Journal, 2012, 102, 429a.	0.5	0
159	Nucleosome Detection using Solid State Nanopores. Biophysical Journal, 2012, 102, 730a.	0.5	0
160	Translocating Single-Stranded DNA through Crystalline Graphene Nanopores. Biophysical Journal, 2012, 102, 728a.	0.5	0
161	Rapid manufacturing of low-noise membranes for nanopore sensors by <i>trans</i> -chip illumination lithography. Nanotechnology, 2012, 23, 475302.	2.6	31
162	Reply to Comment on â€~Modeling the conductance and DNA blockade of solid-state nanopores'. Nanotechnology, 2012, 23, 088002.	2.6	3

#	Article	IF	CITATIONS
163	Dynamics of DNA Supercoils. Science, 2012, 338, 94-97.	12.6	196
164	DNA sequencing with nanopores. Nature Biotechnology, 2012, 30, 326-328.	17.5	300
165	Robustness and accuracy of cell division in <i>Escherichia coli</i> in diverse cell shapes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6957-6962.	7.1	104
166	Magnetic Forces and DNA Mechanics in Multiplexed Magnetic Tweezers. PLoS ONE, 2012, 7, e41432.	2.5	64
167	NAP1-Assisted Nucleosome Assembly on DNA Measured in Real Time by Single-Molecule Magnetic Tweezers. PLoS ONE, 2012, 7, e46306.	2.5	29
168	Highly Parallel Magnetic Tweezers by Targeted DNA Tethering. Nano Letters, 2011, 11, 5489-5493.	9.1	105
169	Translocation of Single-Wall Carbon Nanotubes Through Solid-State Nanopores. Nano Letters, 2011, 11, 2446-2450.	9.1	27
170	Atomic-Scale Electron-Beam Sculpting of Near-Defect-Free Graphene Nanostructures. Nano Letters, 2011, 11, 2247-2250.	9.1	246
171	In Vitro Measurements of Single-Molecule Transport Across an Individual Biomimetic Nuclear Pore Complex. Biophysical Journal, 2011, 100, 521a.	0.5	1
172	Molecular Detection and Force Spectroscopy in Solid-State Nanopores with Integrated Optical Tweezers. , 2011, , 35-49.		0
173	Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology, 2011, 22, 315101.	2.6	380
174	Single-molecule transport across an individual biomimetic nuclear pore complex. Nature Nanotechnology, 2011, 6, 433-438.	31.5	221
175	Annealing Helicase HARP: A Single Molecule Study. Biophysical Journal, 2011, 100, 240a.	0.5	0
176	High-Speed AFM Reveals the Dynamics of Single Biomolecules at the Nanometer Scale. Cell, 2011, 147, 979-982.	28.9	81
177	Biomimetic nanopores: learning from and about nature. Trends in Biotechnology, 2011, 29, 607-614.	9.3	162
178	Effect of the BRCA2 CTRD domain on RAD51 filaments analyzed by an ensemble of single molecule techniques. Nucleic Acids Research, 2011, 39, 6558-6567.	14.5	12
179	DNA Translocation through Graphene Nanopores. Nano Letters, 2010, 10, 3163-3167.	9.1	908
180	Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nature Nanotechnology, 2010, 5, 874-877.	31.5	261

#	Article	IF	CITATIONS
181	Torsional regulation of hRPA-induced unwinding of double-stranded DNA. Nucleic Acids Research, 2010, 38, 4133-4142.	14.5	43
182	Controlling nanopore size, shape and stability. Nanotechnology, 2010, 21, 115304.	2.6	129
183	Detection of Local Protein Structures along DNA Using Solid-State Nanopores. Nano Letters, 2010, 10, 324-328.	9.1	218
184	Unraveling Single-Stranded DNA in a Solid-State Nanopore. Nano Letters, 2010, 10, 1414-1420.	9.1	103
185	Influence of Electrolyte Composition on Liquid-Gated Carbon Nanotube and Graphene Transistors. Journal of the American Chemical Society, 2010, 132, 17149-17156.	13.7	162
186	Wedging Transfer of Nanostructures. Nano Letters, 2010, 10, 1912-1916.	9.1	190
187	Charge Noise in Graphene Transistors. Nano Letters, 2010, 10, 1563-1567.	9.1	109
188	Electrokinetic Concentration of DNA Polymers in Nanofluidic Channels. Nano Letters, 2010, 10, 765-772.	9.1	71
189	Note: Interference technique for minimally invasive, subnanometer, microsecond measurements of displacements. Review of Scientific Instruments, 2010, 81, 016103.	1.3	0
190	Bacterial growth and motility in sub-micron constrictions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14861-14866.	7.1	244
191	Electrophoretic Force on a Protein-Coated DNA Molecule in a Solid-State Nanopore. Nano Letters, 2009, 9, 4441-4445.	9.1	66
192	Dynamics of RecA filaments on single-stranded DNA. Nucleic Acids Research, 2009, 37, 4089-4099.	14.5	78
193	Low-frequency noise in solid-state nanopores. Nanotechnology, 2009, 20, 095501.	2.6	83
194	Probing Macrophage Activity with Carbonâ€Nanotube Sensors. Small, 2009, 5, 2528-2532.	10.0	27
195	Origin of the electrophoretic force on DNA in solid-state nanopores. Nature Physics, 2009, 5, 347-351.	16.7	327
196	Comparing the weak and strong gateâ€coupling regimes for nanotube and graphene transistors. Physica Status Solidi - Rapid Research Letters, 2009, 3, 190-192.	2.4	13
197	Translocation of RecA-Coated Double-Stranded DNA through Solid-State Nanopores. Nano Letters, 2009, 9, 3089-3095.	9.1	129
198	Distinguishing Single- and Double-Stranded Nucleic Acid Molecules Using Solid-State Nanopores. Nano Letters, 2009, 9, 2953-2960.	9.1	144

#	Article	IF	CITATIONS
199	Control of Shape and Material Composition of Solid-State Nanopores. Nano Letters, 2009, 9, 479-484.	9.1	95
200	Optimizing the Signal-to-Noise Ratio for Biosensing with Carbon Nanotube Transistors. Nano Letters, 2009, 9, 377-382.	9.1	87
201	Solid-state nanopores. , 2009, , 60-66.		7
202	Inserting and Manipulating DNA in a Nanopore with Optical Tweezers. Methods in Molecular Biology, 2009, 544, 95-112.	0.9	10
203	Motor step size and ATP coupling efficiency of the dsDNA translocase EcoR124I. EMBO Journal, 2008, 27, 1388-1398.	7.8	62
204	Monte Carlo Simulations of Protein Assembly, Disassembly, and Linear Motion on DNA. Biophysical Journal, 2008, 95, 4560-4569.	0.5	9
205	Toward Single-Enzyme Molecule Electrochemistry: [NiFe]-Hydrogenase Protein Film Voltammetry at Nanoelectrodes. ACS Nano, 2008, 2, 2497-2504.	14.6	94
206	The Interrelationship of Helicase and Nuclease Domains during DNA Translocation by the Molecular Motor EcoR124I. Journal of Molecular Biology, 2008, 384, 1273-1286.	4.2	17
207	Homologous Recombination in Real Time: DNA Strand Exchange by RecA. Molecular Cell, 2008, 30, 530-538.	9.7	82
208	Identifying the Mechanism of Biosensing with Carbon Nanotube Transistors. Nano Letters, 2008, 8, 591-595.	9.1	431
209	Synthesizing the Future. ACS Chemical Biology, 2008, 3, 10-12.	3.4	4
210	Polymyxin-Coated Au and Carbon Nanotube Electrodes for Stable [NiFe]-Hydrogenase Film Voltammetry. Langmuir, 2008, 24, 5925-5931.	3.5	36
211	Charge Noise in Liquid-Gated Single-Wall Carbon Nanotube Transistors. Nano Letters, 2008, 8, 685-688.	9.1	51
212	Microtubule curvatures under perpendicular electric forces reveal a low persistence length. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7941-7946.	7.1	78
213	Noise in solid-state nanopores. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 417-421.	7.1	315
214	End-joining long nucleic acid polymers. Nucleic Acids Research, 2008, 36, e104-e104.	14.5	4
215	Single-Molecule Observation of Anomalous Electrohydrodynamic Orientation of Microtubules. Physical Review Letters, 2008, 101, 118301.	7.8	20
216	Conformation and Dynamics of DNA Confined in Slitlike Nanofluidic Channels. Physical Review Letters, 2008, 101, 108303.	7.8	124

#	Article	IF	CITATIONS
217	Velocity Modulation of Microtubules in Electric Fields. Nano Letters, 2008, 8, 4217-4220.	9.1	31
218	Real-time assembly and disassembly of human RAD51 filaments on individual DNA molecules. Nucleic Acids Research, 2007, 35, 5646-5657.	14.5	100
219	Electrophoresis of individual microtubules in microchannels. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7770-7775.	7.1	52
220	Motor Proteins at Work for Nanotechnology. Science, 2007, 317, 333-336.	12.6	507
221	Simultaneous Electrical Transport and Scanning Tunneling Spectroscopy of Carbon Nanotubes. Nano Letters, 2007, 7, 2937-2941.	9.1	18
222	Persistence Length Measurements from Stochastic Single-Microtubule Trajectories. Nano Letters, 2007, 7, 3138-3144.	9.1	57
223	AFM Tip-Induced Dissociation of RecA-dsDNA Filaments. Nano Letters, 2007, 7, 1112-1112.	9.1	0
224	Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels. Nano Letters, 2007, 7, 1022-1025.	9.1	489
225	Solid-state nanopores. Nature Nanotechnology, 2007, 2, 209-215.	31.5	1,743
226	Single-molecule studies of nucleic acid motors. Current Opinion in Structural Biology, 2007, 17, 80-86.	5.7	57
227	Fluorescent Human RAD51 Reveals Multiple Nucleation Sites and Filament Segments Tightly Associated along a Single DNA Molecule. Structure, 2007, 15, 599-609.	3.3	73
228	Carbon nanotube biosensors: The critical role of the reference electrode. Applied Physics Letters, 2007, 91, .	3.3	123
229	Charge Inversion at High Ionic Strength Studied by Streaming Currents. Physical Review Letters, 2006, 96, 224502.	7.8	239
230	Molecular Sorting by Electrical Steering of Microtubules in Kinesin-Coated Channels. Science, 2006, 312, 910-914.	12.6	225
231	Electrochemistry at Single-Walled Carbon Nanotubes:Â The Role of Band Structure and Quantum Capacitance. Journal of the American Chemical Society, 2006, 128, 7353-7359.	13.7	210
232	Fabrication and Characterization of Nanopore-Based Electrodes with Radii down to 2 nm. Nano Letters, 2006, 6, 105-109.	9.1	135
233	Tunneling in Suspended Carbon Nanotubes Assisted by Longitudinal Phonons. Physical Review Letters, 2006, 96, 026801.	7.8	229
234	Experimental Observation of Nonlinear Ionic Transport at the Nanometer Scale. Nano Letters, 2006, 6, 2531-2535.	9.1	67

#	Article	IF	CITATIONS
235	Nanobubbles in Solid-State Nanopores. Physical Review Letters, 2006, 97, 088101.	7.8	121
236	Electrokinetic Energy Conversion Efficiency in Nanofluidic Channels. Nano Letters, 2006, 6, 2232-2237.	9.1	394
237	Comment on "Direct and Real-Time Visualization of the Disassembly of a Single RecA-DNA-ATPγS Complex Using AFM Imaging in Fluid― Nano Letters, 2006, 6, 3000-3002.	9.1	9
238	Salt Dependence of Ion Transport and DNA Translocation through Solid-State Nanopores. Nano Letters, 2006, 6, 89-95.	9.1	735
239	High flexibility of DNA on short length scales probed by atomic force microscopy. Nature Nanotechnology, 2006, 1, 137-141.	31.5	345
240	Direct force measurements on DNA in a solid-state nanopore. Nature Physics, 2006, 2, 473-477.	16.7	587
241	When a helicase is not a helicase: dsDNA tracking by the motor protein EcoR124I. EMBO Journal, 2006, 25, 2230-2239.	7.8	57
242	Specific Vectorial Immobilization of Oligonucleotide-Modified Yeast Cytochromec on Carbon Nanotubes. ChemPhysChem, 2006, 7, 1705-1709.	2.1	18
243	Pressure-driven transport of confined DNA polymers in fluidic channels. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15853-15858.	7.1	163
244	Optical tweezers for force measurements on DNA in nanopores. Review of Scientific Instruments, 2006, 77, 105105.	1.3	128
245	Dynamics of initiation, termination and reinitiation of DNA translocation by the motor proteinEcoR124I. EMBO Journal, 2005, 24, 4188-4197.	7.8	33
246	Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature, 2005, 434, 671-674.	27.8	287
247	Orbital Kondo effect in carbon nanotubes. Nature, 2005, 434, 484-488.	27.8	341
248	Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA. Nature, 2005, 437, 440-443.	27.8	243
249	Atomic force microscopy shows that vaccinia topoisomerase IB generates filaments on DNA in a cooperative fashion. Nucleic Acids Research, 2005, 33, 5945-5953.	14.5	23
250	Tunable Orbital Pseudospin and Multi-level Kondo Effect in Carbon Nanotubes. AIP Conference Proceedings, 2005, , .	0.4	0
251	Publisher's Note: Electronic excitation spectrum of metallic carbon nanotubes [Phys. Rev. B71, 153402 (2005)]. Physical Review B, 2005, 71, .	3.2	1
252	Electronic Transport Spectroscopy of Carbon Nanotubes in a Magnetic Field. Physical Review Letters, 2005, 94, 156802.	7.8	90

#	Article	IF	CITATIONS
253	Translocation of double-strand DNA through a silicon oxide nanopore. Physical Review E, 2005, 71, 051903.	2.1	389
254	Electron-beam-induced deformations of SiO2 nanostructures. Journal of Applied Physics, 2005, 98, 014307.	2.5	69
255	Three-terminal scanning tunneling spectroscopy of suspended carbon nanotubes. Physical Review B, 2005, 72, .	3.2	49
256	Human Rad51 filaments on double- and single-stranded DNA: correlating regular and irregular forms with recombination function. Nucleic Acids Research, 2005, 33, 3292-3302.	14.5	116
257	Torque-limited RecA polymerization on dsDNA. Nucleic Acids Research, 2005, 33, 2099-2105.	14.5	37
258	Individual Single-Walled Carbon Nanotubes as Nanoelectrodes for Electrochemistry. Nano Letters, 2005, 5, 137-142.	9.1	293
259	High Rectifying Efficiencies of Microtubule Motility on Kinesin-Coated Gold Nanostructures. Nano Letters, 2005, 5, 1117-1122.	9.1	90
260	Electrical Docking of Microtubules for Kinesin-Driven Motility in Nanostructures. Nano Letters, 2005, 5, 235-241.	9.1	55
261	Fast DNA Translocation through a Solid-State Nanopore. Nano Letters, 2005, 5, 1193-1197.	9.1	675
262	Lithographically Fabricated Nanopore-Based Electrodes for Electrochemistry. Analytical Chemistry, 2005, 77, 1911-1915.	6.5	48
263	Nanopore Tomography of a Laser Focus. Nano Letters, 2005, 5, 2253-2256.	9.1	78
264	Sculpting Nanoelectrodes with a Transmission Electron Beam for Electrical and Geometrical Characterization of Nanoparticles. Nano Letters, 2005, 5, 549-553.	9.1	65
265	Electrodeposition of Noble Metal Nanoparticles on Carbon Nanotubes. Journal of the American Chemical Society, 2005, 127, 6146-6147.	13.7	390
266	Single-Molecule Measurements of the Persistence Length of Double-Stranded RNA. Biophysical Journal, 2005, 88, 2737-2744.	0.5	241
267	Streaming Currents in a Single Nanofluidic Channel. Physical Review Letters, 2005, 95, 116104.	7.8	420
268	Integration of a gate electrode into carbon nanotube devices for scanning tunneling microscopy. Applied Physics Letters, 2005, 86, 112106.	3.3	13
269	Electronic excitation spectrum of metallic carbon nanotubes. Physical Review B, 2005, 71, .	3.2	88
270	Scanning tunneling spectroscopy of suspended single-wall carbon nanotubes. Applied Physics Letters, 2004, 84, 4280-4282.	3.3	43

#	Article	IF	CITATIONS
271	Dual architectural roles of HU: Formation of flexible hinges and rigid filaments. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6969-6974.	7.1	272
272	Joining of long double-stranded RNA molecules through controlled overhangs. Nucleic Acids Research, 2004, 32, e140-e140.	14.5	10
273	Initiation of translocation by Type I restriction-modification enzymes is associated with a short DNA extrusion. Nucleic Acids Research, 2004, 32, 6540-6547.	14.5	30
274	Self-Assembly Experiments with PNA-Derivatized Carbon Nanotubes. AIP Conference Proceedings, 2004, , .	0.4	0
275	Real-time observation of DNA translocation by the type I restriction modification enzyme EcoR124I. Nature Structural and Molecular Biology, 2004, 11, 838-843.	8.2	111
276	Electron-hole symmetry in a semiconducting carbon nanotube quantum dot. Nature, 2004, 429, 389-392.	27.8	213
277	Electrical generation and absorption of phonons in carbon nanotubes. Nature, 2004, 432, 371-374.	27.8	294
278	Direct Immobilization of Native Yeast Iso-1 Cytochromecon Bare Gold:Â Fast Electron Relay to Redox Enzymes and Zeptomole Protein-Film Voltammetry. Journal of the American Chemical Society, 2004, 126, 11103-11112.	13.7	121
279	Surface-Charge-Governed Ion Transport in Nanofluidic Channels. Physical Review Letters, 2004, 93, 035901.	7.8	936
280	A Few Electron-Hole Semiconducting Carbon Nanotube Quantum Dot. AIP Conference Proceedings, 2004, , .	0.4	0
281	Electrical Transport Study of Phenylene-Based π-Conjugated Molecules in a Three-Terminal Geometry. Annals of the New York Academy of Sciences, 2003, 1006, 122-132.	3.8	10
282	Logic circuits based on carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 42-46.	2.7	36
283	Fabrication of solid-state nanopores with single-nanometre precision. Nature Materials, 2003, 2, 537-540.	27.5	1,212
284	Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors. Nano Letters, 2003, 3, 727-730.	9.1	1,262
285	Absence of Strong Gate Effects in Electrical Measurements on Phenylene-Based Conjugated Molecules. Nano Letters, 2003, 3, 113-117.	9.1	145
286	The coiled-coil of the human Rad50 DNA repair protein contains specific segments of increased flexibility. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7581-7586.	7.1	82
287	Direct observation of confined states in metallic single-walled carbon nanotubes. Applied Physics Letters, 2003, 83, 1011-1013.	3.3	43
288	Electronic transport in monolayers of phthalocyanine polymers. Nanotechnology, 2003, 14, 1043-1050.	2.6	5

#	Article	IF	CITATIONS
289	Scanning tunneling spectroscopy on crossed carbon nanotubes. Physical Review B, 2002, 65, .	3.2	31
290	Correlated Tunneling in Intramolecular Carbon Nanotube Quantum Dots. Physical Review Letters, 2002, 89, 196402.	7.8	33
291	Backbone-induced semiconducting behavior in shortDNAwires. Physical Review B, 2002, 65, .	3.2	195
292	Transport through the interface between a semiconducting carbon nanotube and a metal electrode. Physical Review B, 2002, 66, .	3.2	92
293	Scanning tunneling spectroscopy of C60 adsorbed on Si()-(2×1). Surface Science, 2002, 498, 237-243.	1.9	35
294	Towards DNA-Mediated Self Assembly of Carbon Nanotube Molecular Devices. AIP Conference Proceedings, 2002, , .	0.4	4
295	Carbon nanotubes with DNA recognition. Nature, 2002, 420, 761-761.	27.8	490
296	Logic circuits with carbon nanotubes. AIP Conference Proceedings, 2002, , .	0.4	9
297	Logic Circuits with Carbon Nanotube Transistors. Science, 2001, 294, 1317-1320.	12.6	2,523
298	Carbon Nanotube Single-Electron Transistors at Room Temperature. Science, 2001, 293, 76-79.	12.6	1,025
299	Electrical Transport Through Single-Wall Carbon Nanotubes. , 2001, , 147-171.		61
300	Human Rad50/Mre11 Is a Flexible Complex that Can Tether DNA Ends. Molecular Cell, 2001, 8, 1129-1135.	9.7	437
301	Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale. Applied Physics Letters, 2001, 79, 3881-3883.	3.3	419
302	Scanning tunneling spectroscopy on a carbon nanotube buckle. AIP Conference Proceedings, 2001, , .	0.4	4
303	Two-dimensional imaging of electronic wavefunctions in carbon nanotubes. Nature, 2001, 412, 617-620.	27.8	201
304	Electronic properties of DNA. Physics World, 2001, 14, 29-33.	0.0	271
305	Direct measurements of electrical transport through DNA molecules. AIP Conference Proceedings, 2000, , .	0.4	11
306	Manipulation and Imaging of Individual Single-Walled Carbon Nanotubes with an Atomic Force Microscope. Advanced Materials, 2000, 12, 1299-1302.	21.0	140

#	Article	IF	CITATIONS
307	Electrical transport through ultrathin ordered K3C60 films on Si. Carbon, 2000, 38, 1647-1651.	10.3	3
308	Direct measurement of electrical transport through DNA molecules. Nature, 2000, 403, 635-638.	27.8	1,623
309	Electron Addition and Excitation Spectra of Individual Single-wall Carbon Nanotubes. Journal of Low Temperature Physics, 2000, 118, 495-507.	1.4	6
310	A mechanism for cutting carbon nanotubes with a scanning tunneling microscope. European Physical Journal B, 2000, 17, 301-308.	1.5	39
311	Atomic structure of carbon nanotubes from scanning tunneling microscopy. Physical Review B, 2000, 61, 2991-2996.	3.2	164
312	Spatially resolved scanning tunneling spectroscopy on single-walled carbon nanotubes. Physical Review B, 2000, 62, 5238-5244.	3.2	113
313	Charge-Density-Wave Current Conversion in SubmicronNbSe3Wires. Physical Review Letters, 2000, 84, 538-541.	7.8	28
314	High-Field Electrical Transport in Single-Wall Carbon Nanotubes. Physical Review Letters, 2000, 84, 2941-2944.	7.8	1,356
315	Potential modulations along carbon nanotubes. Nature, 2000, 404, 834-835.	27.8	164
316	Electrical transport through carbon nanotube junctions created by mechanical manipulation. Physical Review B, 2000, 62, R10653-R10656.	3.2	192
317	Manipulation and Imaging of Individual Single-Walled Carbon Nanotubes with an Atomic Force Microscope. Advanced Materials, 2000, 12, 1299-1302.	21.0	6
318	Lithographically patterned wires of the charge-density-wave conductor Rb0.30MoO3. Journal of Applied Physics, 1999, 86, 4440-4445.	2.5	7
319	Sliding charge-density-wave transport in micron-sized wires ofRb0.30MoO3. Physical Review B, 1999, 60, 5287-5294.	3.2	17
320	Carbon nanotube intramolecular junctions. Nature, 1999, 402, 273-276.	27.8	1,639
321	Carbon Nanotubes as Molecular Quantum Wires. Physics Today, 1999, 52, 22-28.	0.3	1,257
322	Imaging Electron Wave Functions of Quantized Energy Levels in Carbon Nanotubes. Science, 1999, 283, 52-55.	12.6	311
323	Submicron structures of the charge-density-wave conductor NbSe3. Synthetic Metals, 1999, 103, 2612-2615.	3.9	5
324	STM atomic resolution images of single-wall carbon nanotubes. Applied Physics A: Materials Science and Processing, 1998, 66, S153-S155.	2.3	33

#	Article	IF	CITATIONS
325	Electron–electron correlations in carbon nanotubes. Nature, 1998, 394, 761-764.	27.8	247
326	Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393, 49-52.	27.8	5,167
327	Electronic structure of atomically resolved carbon nanotubes. Nature, 1998, 391, 59-62.	27.8	2,898
328	Optical investigations of the collective transport in CDW-films. Physica B: Condensed Matter, 1998, 244, 103-106.	2.7	4
329	Temperature-dependent resistivity of single-wall carbon nanotubes. Europhysics Letters, 1998, 41, 683-688.	2.0	220
330	Multiprobe Transport Experiments on Individual Single-Wall Carbon Nanotubes. Physical Review Letters, 1998, 80, 4036-4039.	7.8	297
331	Electrical transport through micro-fabricated charge-density-wave structures. Physics-Uspekhi, 1998, 41, 167-171.	2.2	11
332	Epitaxial film growth of the charge-density-wave conductorRb0.30MoO3onSrTiO3(001). Physical Review B, 1998, 57, 12530-12535.	3.2	8
333	Deposition and atomic force microscopy of individual phthalocyanine polymers between nanofabricated electrodes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 586.	1.6	10
334	Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 793.	1.6	123
335	Length control of individual carbon nanotubes by nanostructuring with a scanning tunneling microscope. Applied Physics Letters, 1997, 71, 2629-2631.	3.3	149
336	Thin films of the charge-density-wave oxideRb0.30MoO3by pulsed-laser deposition. Physical Review B, 1997, 55, 4817-4824.	3.2	16
337	Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Applied Physics Letters, 1997, 71, 1273-1275.	3.3	422
338	Electrical transport in monolayers of phthalocyanine molecular wires and afm imaging of a single wire bridging two electrodes. Synthetic Metals, 1997, 84, 733-734.	3.9	14
339	STM imaging and spectroscopy of single copperphthalocyanine molecules. Synthetic Metals, 1997, 84, 853-854.	3.9	26
340	Photolithographic patterning of the charge-density-wave conductor Rb0.30MoO3. Synthetic Metals, 1997, 86, 1781-1784.	3.9	5
341	Orientation of the charge-density-wave chains in thin films of Rb0.30MoO3. Synthetic Metals, 1997, 86, 2193-2194.	3.9	2

³⁴² Fullerene 'crop circles'. Nature, 1997, 385, 780-781.

27.8 402

#	Article	IF	CITATIONS
343	Individual single-wall carbon nanotubes as quantum wires. Nature, 1997, 386, 474-477.	27.8	2,812
344	Thinâ€film growth of the chargeâ€densityâ€wave oxide Rb0.30MoO3. Applied Physics Letters, 1996, 68, 3823-3825.	3.3	33
345	Voltage noise of YBa2Cu3O7â^î^ films in the vortex-liquid phase. Physica C: Superconductivity and Its Applications, 1995, 247, 67-73.	1.2	22
346	Finite-size effects on the vortex-glass transition in thinYBa2Cu3O7â^îÎfilms. Physical Review B, 1995, 52, 4536-4544.	3.2	43
347	2D–3D crossover effects on the vortex-glass phase transition in thin YBa2Cu3O7â^'δ films. Physica B: Condensed Matter, 1994, 194-196, 1911-1912.	2.7	3
348	Low-temperature current-voltage characteristics of YBa2Cu3O7â^'δ films in a magnetic field: direct evidence for a vortex-glass phase. Cryogenics, 1993, 33, 129-132.	1.7	6
349	Superconducting phase ofYBa2Cu3O7â~'δfilms in high magnetic fields: Vortex glass or Bose glass. Physical Review B, 1993, 48, 16826-16829.	3.2	39
350	Nonlinear Hall resistivity inYBa2Cu3O7â^îfilms near the vortex-glass transition. Physical Review Letters, 1993, 71, 3858-3861.	7.8	33
351	Absence of a finite-temperature vortex-glass phase transition in two-dimensionalYBa2Cu3O7â~Îfilms. Physical Review Letters, 1992, 69, 2717-2720.	7.8	106
352	Magnetic field effects on switching noise in a quantum point contact. Physical Review B, 1992, 46, 15523-15525.	3.2	5
353	Measurement of the Exponentμin the Low-Temperature Phase ofYBa2Cu3O7â~ÎFilms in a Magnetic Field: Direct Evidence for a Vortex-Glass Phase. Physical Review Letters, 1992, 68, 3347-3350.	7.8	134
354	Low-frequency noise of quantum point contacts in the ballistic and quantum Hall regime. Physica B: Condensed Matter, 1991, 175, 213-216.	2.7	24
355	Dimensionality crossover of the superconducting-normal transition in YBa2Cu3O7â~δ thin films both at high magnetic fields and at zero field. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1799-1800.	1.2	26
356	Spontaneous resistance switching and low-frequency noise in quantum point contacts. Physical Review Letters, 1991, 66, 2148-2151.	7.8	94
357	Activated dynamics in a two-dimensional Ising spin glass:Rb2Cu1â^'xCoxF4. Physical Review B, 1989, 40, 11243-11251.	3.2	228
358	Activated Dynamics in the Two-Dimensional Ising Spin-GlassRb2Cu1â^'xCoxF4. Physical Review Letters, 1988, 61, 1780-1783.	7.8	56
359	Rb2Cu1â^'xCoxF4, a twoâ€dimensional Ising spin glass. Journal of Applied Physics, 1988, 63, 4334-4336.	2.5	23
360	Magnetic order in the two-dimensional randomly mixed ferromagnet-antiferromagnetRb2Cu1â^'xCoxF4. Physical Review B, 1988, 38, 11512-11522.	3.2	50

#	Article	IF	CITATIONS
361	Static critical behavior of the two-dimensional Ising spin glassRb2Cu1â^'xCoxF4. Physical Review B, 1988, 38, 8985-8991.	3.2	31
362	Breakup of long-range order in the diluted antiferromagnetK2MnxZn1â^'xF4in zero magnetic field. Physical Review B, 1987, 35, 7157-7160.	3.2	5
363	Monte Carlo investigation of diluted antiferromagnets in high magnetic fields. Solid State Communications, 1985, 54, 887-889.	1.9	5
364	NMR study of local magnetizations in diluted two-dimensional antiferromagnets. Physical Review B, 1985, 32, 5785-5792.	3.2	10
365	Competition between ammonia and the nitrite ion as leaving groups in cobalt(III) complexes. 3. Hydrolysis of nitroamminecobalt(III) complexes. Inorganic Chemistry, 1976, 15, 2370-2375.	4.0	3
366	Competition between ammonia and the nitrite ion as leaving groups in cobalt(III) complexes. I. Hydrolysis of the nitropentaamminecobalt(III) ion in ammonia buffers. Inorganic Chemistry, 1976, 15, 1025-1030.	4.0	6
367	Proton magnetic resonance spectra and stereochemistry of ammine nitrocobalt(III) complexes. Inorganica Chimica Acta, 1976, 17, 154-156.	2.4	12
368	DNA Sequence-Directed Cooperation between Nucleoid-Associated Proteins. SSRN Electronic Journal, 0, , .	0.4	0