Robert G Mannino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6092247/publications.pdf

Version: 2024-02-01

32 papers

1,100 citations

16 h-index 26 g-index

33 all docs 33 docs citations

33 times ranked 2020 citing authors

#	Article	IF	Citations
1	Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14430-14435.	7.1	166
2	Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nature Biomedical Engineering, 2018, 2, 453-463.	22.5	118
3	"Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions― Scientific Reports, 2015, 5, 12401.	3.3	100
4	Single-platelet nanomechanics measured by high-throughput cytometry. Nature Materials, 2017, 16, 230-235.	27.5	88
5	Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1987-1992.	7.1	82
6	A microengineered vascularized bleeding model that integrates the principal components of hemostasis. Nature Communications, 2018, 9, 509.	12.8	70
7	Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis. Integrative Biology (United Kingdom), 2019, 11, 119-129.	1.3	61
8	3D microvascular model recapitulates the diffuse large B-cell lymphoma tumor microenvironment in vitro. Lab on A Chip, 2017, 17, 407-414.	6.0	60
9	Protein Corona in Response to Flow: Effect on Protein Concentration and Structure. Biophysical Journal, 2018, 115, 209-216.	0.5	48
10	Disposable platform provides visual and color-based point-of-care anemia self-testing. Journal of Clinical Investigation, 2014, 124, 4387-4394.	8.2	48
11	Extracellular fluid tonicity impacts sickle red blood cell deformability and adhesion. Blood, 2017, 130, 2654-2663.	1.4	47
12	Biomechanics of haemostasis and thrombosis in health and disease: from the macro―to molecular scale. Journal of Cellular and Molecular Medicine, 2013, 17, 579-596.	3.6	35
13	Thrombosis-on-a-chip: Prospective impact of microphysiological models of vascular thrombosis. Current Opinion in Biomedical Engineering, 2018, 5, 29-34.	3.4	31
14	A blueprint for academic laboratories to produce SARS-CoV-2 quantitative RT-PCR test kits. Journal of Biological Chemistry, 2020, 295, 15438-15453.	3.4	31
15	Integrated automated particle tracking microfluidic enables highâ€ŧhroughput cell deformability cytometry for red cell disorders. American Journal of Hematology, 2019, 94, 189-199.	4.1	26
16	Endothelial cell culture in microfluidic devices for investigating microvascular processes. Biomicrofluidics, 2018, 12, 042203.	2.4	21
17	Increased Erythrocyte Rigidity Is Sufficient to Cause Endothelial Dysfunction in Sickle Cell Disease. Blood, 2012, 120, 818-818.	1.4	12
18	The RADx Tech Test Verification Core and the ACME POCT in the Evaluation of COVID-19 Testing Devices: A Model for Progress and Change. IEEE Open Journal of Engineering in Medicine and Biology, 2021, 2, 142-151.	2.3	11

#	Article	IF	CITATIONS
19	Engineering "endothelialized―microfluidics for investigating vascular and hematologic processes using non-traditional fabrication techniques. Current Opinion in Biomedical Engineering, 2018, 5, 13-20.	3.4	10
20	Interdigitated microelectronic bandage augments hemostasis and clot formation at low applied voltage <i>in vitro</i> and <i>in vivo</i> . Lab on A Chip, 2018, 18, 2985-2993.	6.0	7
21	Covidâ€19 will not "magically disappear― Why access to widespread testing is paramount. American Journal of Hematology, 2021, 96, 174-178.	4.1	5
22	Vessel Geometry Interacts with Red Blood Cell Stiffness to Promote Endothelial Dysfunction in Sickle Cell Disease. Blood, 2015, 126, 965-965.	1.4	4
23	Stiff Erythrocyte Subpopulations Biomechanically Induce Endothelial Inflammation in Sickle Cell Disease. Blood, 2019, 134, 3560-3560.	1.4	4
24	Enabling mesenchymal stromal cell immunomodulatory analysis using scalable platforms. Integrative Biology (United Kingdom), 2019, 11, 154-162.	1.3	3
25	Vascular Geometry and Flow Profile Mediate Pathological Cell-Cell Interactions in Sickle Cell Disease As Measured with "Do-It-Yourself" "Endothelial-Ized" Microfluidics. Blood, 2014, 124, 454-454.	1.4	3
26	3D in vitro microvascular model-based lymphoma model. Methods in Cell Biology, 2018, 146, 149-158.	1.1	2
27	Platelet Mechanosensing: Adhesion and Spreading On Immobilized Fibrinogen Depends On Substrate Stiffness. Blood, 2012, 120, 384-384.	1.4	1
28	Integrated Microfluidic Automated Particle Tracking Enables High-Throughput Cell Deformability Cytometry for Red Cell Disorders. Blood, 2018, 132, 1033-1033.	1.4	1
29	An "Endothelialized―Microfluidic System That Distinguishes Procoagulant Mechanisms in Arterial and Venous Thrombosis. Blood, 2012, 120, 1071-1071.	1.4	0
30	High-Throughput Nanomechanical Platelet Contraction Measurements Using Patterned Hydrogels Blood, 2012, 120, 2172-2172.	1.4	0
31	Platelet Adhesion, Spreading and Activation Are Mediated By Mechanosensing of Matrix Stiffness. Blood, 2014, 124, 1438-1438.	1.4	0
32	Commonly Used Clinical Intravenous Fluid Formulations Differentially Affect Sickle Red Blood Cell Stiffness and Transit Time. Blood, 2015, 126, 2164-2164.	1.4	0