
Luis E N Quadri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6091487/publications.pdf Version: 2024-02-01

Lius F Ν Οιμαρα

#	Article	IF	CITATIONS
1	Quorum sensing by peptide pheromones and twoâ€component signalâ€transduction systems in Gramâ€positive bacteria. Molecular Microbiology, 1997, 24, 895-904.	2.5	710
2	Characterization of Sfp, aBacillus subtilisPhosphopantetheinyl Transferase for Peptidyl Carrier Protein Domains in Peptide Synthetasesâ€. Biochemistry, 1998, 37, 1585-1595.	2.5	643
3	Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nature Chemical Biology, 2005, 1, 29-32.	8.0	279
4	The dimycocerosate ester polyketide virulence factors of mycobacteria. Progress in Lipid Research, 2005, 44, 259-302.	11.6	132
5	Assembly of thePseudomonas aeruginosaNonribosomal Peptide Siderophore Pyochelin:Â In Vitro Reconstitution of Aryl-4,2-bisthiazoline Synthetase Activity from PchD, PchE, and PchFâ€. Biochemistry, 1999, 38, 14941-14954.	2.5	129
6	Transcriptome Analysis of the Response of Pseudomonas aeruginosa to Hydrogen Peroxide. Journal of Bacteriology, 2004, 186, 248-252.	2.2	129
7	Pseudomonas aeruginosa SoxR Does Not Conform to the Archetypal Paradigm for SoxR-Dependent Regulation of the Bacterial Oxidative Stress Adaptive Response. Infection and Immunity, 2005, 73, 2958-2966.	2.2	115
8	Transcriptome analysis of the Pseudomonas aeruginosa response to iron. Archives of Microbiology, 2003, 180, 374-379.	2.2	100
9	Assembly of aryl-capped siderophores by modular peptide synthetases and polyketide synthases. Molecular Microbiology, 2000, 37, 1-12.	2.5	98
10	Biosynthesis of mycobacterial lipids by polyketide synthases and beyond. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49, 179-211.	5.2	90
11	Mycobacterial polyketide-associated proteins are acyltransferases: Proof of principle with Mycobacterium tuberculosis PapA5. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4608-4613.	7.1	87
12	Atypical Genetic Locus Associated with Constitutive Production of Enterocin B by <i>Enterococcus faecium</i> BFE 900. Applied and Environmental Microbiology, 1999, 65, 2170-2178.	3.1	85
13	Mycobacterial Phenolic Glycolipid Virulence Factor Biosynthesis: Mechanism and Small-Molecule Inhibition of Polyketide Chain Initiation. Chemistry and Biology, 2008, 15, 51-61.	6.0	78
14	Crystal Structure of PapA5, a Phthiocerol Dimycocerosyl Transferase from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2004, 279, 30634-30642.	3.4	63
15	Strategic Paradigm Shifts in the Antimicrobial Drug Discovery Process of the 21st Century. Infectious Disorders - Drug Targets, 2007, 7, 230-237.	0.8	57
16	Small molecules with structural similarities to siderophores as novel antimicrobials against Mycobacterium tuberculosis and Yersinia pestis. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2662-2668.	2.2	57
17	Inactivation of tesA Reduces Cell Wall Lipid Production and Increases Drug Susceptibility in Mycobacteria. Journal of Biological Chemistry, 2011, 286, 24616-24625.	3.4	47
18	Pharmacokinetic and <i>In Vivo</i> Efficacy Studies of the Mycobactin Biosynthesis Inhibitor Salicyl-AMS in Mice. Antimicrobial Agents and Chemotherapy, 2013, 57, 5138-5140.	3.2	47

Luis E N Quadri

#	Article	IF	CITATIONS
19	Mutational and Phylogenetic Analyses of the Mycobacterial <i>mbt</i> Gene Cluster. Journal of Bacteriology, 2011, 193, 5905-5913.	2.2	42
20	Exploiting Ligand Conformation in Selective Inhibition of Non-Ribosomal Peptide Synthetase Amino Acid Adenylation with Designed Macrocyclic Small Molecules. Journal of the American Chemical Society, 2007, 129, 7752-7753.	13.7	37
21	Pleiotropic consequences of gene knockouts in the phthiocerol dimycocerosate and phenolic glycolipid biosynthetic gene cluster of the opportunistic human pathogen <i>Mycobacterium marinum</i> . FEMS Microbiology Letters, 2016, 363, fnw016.	1.8	35
22	Identification of Phthiodiolone Ketoreductase, an Enzyme Required for Production of Mycobacterial Diacyl Phthiocerol Virulence Factors. Journal of Bacteriology, 2005, 187, 4760-4766.	2.2	34
23	Production of mycobacterial cell wall glycopeptidolipids requires a member of the MbtH-like protein family. BMC Microbiology, 2012, 12, 118.	3.3	26
24	Cooperation between a Coenzyme A-Independent Stand-Alone Initiation Module and an Iterative Type I Polyketide Synthase during Synthesis of Mycobacterial Phenolic Glycolipids. Journal of the American Chemical Society, 2009, 131, 16744-16750.	13.7	23
25	Chemical scaffolds with structural similarities to siderophores of nonribosomal peptide–polyketide origin as novel antimicrobials against Mycobacterium tuberculosis and Yersinia pestis. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6533-6537.	2.2	19
26	Biosynthesis of Cell Envelope-Associated Phenolic Glycolipids in Mycobacterium marinum. Journal of Bacteriology, 2015, 197, 1040-1050.	2.2	18
27	The mycobacterial acyltransferase PapA5 is required for biosynthesis of cell wall-associated phenolic glycolipids. Microbiology (United Kingdom), 2012, 158, 1379-1387.	1.8	15
28	Transposon mutagenesis inMycobacterium kansasiilinks a small RNA gene to colony morphology and biofilm formation and identifies 9,885 intragenic insertions that do not compromise colony outgrowth. MicrobiologyOpen, 2020, 9, e988.	3.0	13
29	Design, synthesis, and biological evaluation of α-hydroxyacyl-AMS inhibitors of amino acid adenylation enzymes. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5340-5345.	2.2	8
30	Kinetic Analyses of the Siderophore Biosynthesis Inhibitor Salicyl-AMS and Analogues as MbtA Inhibitors and Antimycobacterial Agents. Biochemistry, 2019, 58, 833-847.	2.5	8
31	Similarity of Gene Expression Patterns in Human Alveolar Macrophages in Response to Pseudomonas aeruginosa and Burkholderia cepacia. Infection and Immunity, 2005, 73, 5262-5268.	2.2	6
32	7,9-Diaryl-1,6,8-trioxaspiro[4.5]dec-3-en-2-ones: Readily accessible and highly potent anticancer compounds. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4035-4038.	2.2	3
33	Mycobacteria Encode Active and Inactive Classes of TesB Fatty-Acyl CoA Thioesterases Revealed through Structural and Functional Analysis. Biochemistry, 2017, 56, 1460-1472.	2.5	3