Maksim Grechko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6088706/publications.pdf

Version: 2024-02-01

840776 996975 17 538 11 15 citations h-index g-index papers 17 17 17 911 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Passively Stabilized Phase-Resolved Collinear SFG Spectroscopy Using a Displaced Sagnac Interferometer. Journal of Physical Chemistry A, 2022, 126, 951-956.	2.5	3
2	Distinguishing different excitation pathways in two-dimensional terahertz-infrared-visible spectroscopy. Journal of Chemical Physics, 2021, 154, 174201.	3.0	8
3	Composition-Dependent Hydrogen-Bonding Motifs and Dynamics in Brønsted Acid–Base Mixtures. Journal of Physical Chemistry B, 2020, 124, 7229-7238.	2.6	7
4	Dynamics of Dicyanamide in Ionic Liquids is Dominated by Local Interactions. Journal of Physical Chemistry B, 2019, 123, 1831-1839.	2.6	14
5	Two-Dimensional Terahertz-Infrared-Visible Spectroscopy Elucidates Coupling Between Low- and High-Frequency Modes. Springer Series in Optical Sciences, 2019, , 197-214.	0.7	2
6	Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy. Nature Communications, 2018, 9, 885.	12.8	67
7	Time-Resolved Sum Frequency Generation Spectroscopy: A Quantitative Comparison Between Intensity and Phase-Resolved Spectroscopy. Journal of Physical Chemistry A, 2018, 122, 2401-2410.	2.5	19
8	Resolution along both infrared and visible frequency axes in second-order Fourier-transform vibrational sum-frequency generation spectroscopy. Chemical Physics, 2018, 512, 27-35.	1.9	0
9	Kopplung von hoch―und niederfrequenten Schwingungsmoden in organischâ€anorganischen Perowskiten. Angewandte Chemie, 2018, 130, 13845-13849.	2.0	0
10	Vibrational Coupling between Organic and Inorganic Sublattices of Hybrid Perovskites. Angewandte Chemie - International Edition, 2018, 57, 13657-13661.	13.8	34
11	Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites. Nature Communications, 2017, 8, 687.	12.8	63
12	Background-Free Fourth-Order Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry Letters, 2015, 6, 2114-2120.	4.6	13
13	Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy. Nature Communications, 2015, 6, 6732.	12.8	91
14	Transition Dipoles from 1D and 2D Infrared Spectroscopy Help Reveal the Secondary Structures of Proteins: Application to Amyloids. Journal of Physical Chemistry B, 2015, 119, 14065-14075.	2.6	58
15	Diffusion-Assisted Photoexcitation Transfer in Coupled Semiconducting Carbon Nanotube Thin Films. ACS Nano, 2014, 8, 5383-5394.	14.6	33
16	Photoexcitation Dynamics of Coupled Semiconducting Carbon Nanotube Thin Films. Nano Letters, 2013, 13, 1495-1501.	9.1	43
17	Quantification of transition dipole strengths using 1D and 2D spectroscopy for the identification of molecular structures via exciton delocalization: Application to α-helices. Journal of Chemical Physics, 2012, 137, 184202.	3.0	83