Naoya Miyauchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6088187/publications.pdf

Version: 2024-02-01

840776 642732 27 503 11 23 citations h-index g-index papers 27 27 27 609 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evaluation of Surface Damage of Pd Using Cross-Sectional Electron Backscatter Diffraction Analysis. Materials Transactions, 2021, 62, 41-47.	1.2	2
2	Model of local hydrogen permeability in stainless steel with twoÂcoexisting structures. Scientific Reports, 2021, 11, 8553.	3.3	15
3	2-step reaction kinetics for hydrogen absorption into bulk material via dissociative adsorption on the surface. Scientific Reports, 2021, 11, 18836.	3.3	4
4	Multimodal Data Analysis for Evaluating Hydrogen Diffusion in Steel. Vacuum and Surface Science, 2021, 64, 472-475.	0.1	1
5	Proposal of Diffusion Model Obtained from Time-resolved Hydrogen Permeation Measurement with Operando Hydrogen Microscopes. Vacuum and Surface Science, 2021, 64, 568-574.	0.1	O
6	Fusion data analysis of imaging data of hydrogen-permeated steel obtained by complementary methods. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 034007.	1.2	6
7	Visualization of local hydrogen diffusion in stainless steel using time resolved electron stimulated desorption. Applied Surface Science, 2020, 527, 146710.	6.1	11
8	Visualization and characterization of localized outgassing position on surface-treated specimens: Chromium oxide layer on stainless steel. Applied Surface Science, 2019, 492, 280-284.	6.1	9
9	Observation of Metal Surface by Operando Hydrogen Microscope. Vacuum and Surface Science, 2019, 62, 27-32.	0.1	5
10	ã,¹ãƒ†ãƒ³ãƒ¬ã,¹é<¼ã,'é€éŽã⊷ãŸé‡œ°´ç´ã®æŒ™å«•観察. Vacuum and Surface Science, 2019, 62, 635-640.		3
	, , , ,	0.1	
11	2D mapping of hydrogen permeation from a stainless steel membrane. Scripta Materialia, 2018, 144, 69-73.	5.2	17
	2D mapping of hydrogen permeation from a stainless steel membrane. Scripta Materialia, 2018, 144,		17
11	2D mapping of hydrogen permeation from a stainless steel membrane. Scripta Materialia, 2018, 144, 69-73. Low Outgas Surface Treatment of Stainless Steel 316L Using Segregated Chromium Oxide Layer.	5.2	
11 12	2D mapping of hydrogen permeation from a stainless steel membrane. Scripta Materialia, 2018, 144, 69-73. Low Outgas Surface Treatment of Stainless Steel 316L Using Segregated Chromium Oxide Layer. Vacuum and Surface Science, 2018, 61, 675-680.	5.2	6
11 12 13	2D mapping of hydrogen permeation from a stainless steel membrane. Scripta Materialia, 2018, 144, 69-73. Low Outgas Surface Treatment of Stainless Steel 316L Using Segregated Chromium Oxide Layer. Vacuum and Surface Science, 2018, 61, 675-680. Electron-Stimulated Desorption., 2018, , 143-147. Nanosecond pump–probe device for time-resolved serial femtosecond crystallography developed at	5.2 0.1	6
11 12 13	2D mapping of hydrogen permeation from a stainless steel membrane. Scripta Materialia, 2018, 144, 69-73. Low Outgas Surface Treatment of Stainless Steel 316L Using Segregated Chromium Oxide Layer. Vacuum and Surface Science, 2018, 61, 675-680. Electron-Stimulated Desorption., 2018, , 143-147. Nanosecond pump–probe device for time-resolved serial femtosecond crystallography developed at SACLA. Journal of Synchrotron Radiation, 2017, 24, 1086-1091. Development of a highly-sensitive Penning ionization electron spectrometer using the magnetic bottle	5.2 0.1 2.4	6 0 28
11 12 13 14	2D mapping of hydrogen permeation from a stainless steel membrane. Scripta Materialia, 2018, 144, 69-73. Low Outgas Surface Treatment of Stainless Steel 316L Using Segregated Chromium Oxide Layer. Vacuum and Surface Science, 2018, 61, 675-680. Electron-Stimulated Desorption., 2018, , 143-147. Nanosecond pump–probe device for time-resolved serial femtosecond crystallography developed at SACLA. Journal of Synchrotron Radiation, 2017, 24, 1086-1091. Development of a highly-sensitive Penning ionization electron spectrometer using the magnetic bottle effect. AIP Conference Proceedings, 2016, , . Microcrystal delivery by pulsed liquid droplet for serial femtosecond crystallography. Acta	5.2 0.1 2.4	6 0 28

#	Article	IF	Citations
19	C 1s photoelectron angular distributions from fixed-in-space CO molecules in the high-energy continuum ≥50 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 194007.	1.5	13
20	Recoil frame photoelectron angular distributions of BF3: A sensitive probe of the shape resonance in the F 1s continuum. Journal of Chemical Physics, 2012, 136, 074305.	3.0	11
21	Three-photon double ionization of Ar studied by photoelectron spectroscopy using an extreme ultraviolet free-electron laser: manifestation of resonance states of an intermediate Ar ⁺ ion. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 071001.	1.5	20
22	FORMATION OF COMPACT AMORPHOUS H ₂ O ICE BY CODEPOSITION OF HYDROGEN ATOMS WITH OXYGEN MOLECULES ON GRAIN SURFACES. Astrophysical Journal, 2009, 701, 464-470.	4.5	115
23	1. Formation of interstellar ice by low temperature surface atomic reactions. Cryobiology, 2009, 59, 370.	0.7	1
24	Nonenergetic reactions between atomic hydrogen and molecules on interstellar grain surfaces. Journal of Physics: Conference Series, 2009, 194, 012044.	0.4	2
25	Formation of hydrogen peroxide and water from the reaction of cold hydrogen atoms with solid oxygen at 10K. Chemical Physics Letters, 2008, 456, 27-30.	2.6	158
26	Structural effects of ice grain surfaces on the hydrogenation of CO at low temperatures. Chemical Physics Letters, 2008, 456, 36-40.	2.6	24
27	Kinetic Energy Measurements of Fragment Ions with a Time-of-Flight Mass Spectrometer Journal of the Mass Spectrometry Society of Japan, 2003, 51, 72-76.	0.1	1