
Krushna Prasad Shadangi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6088121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of Nanotechnology in the Production of Biohydrogen: A Review. Chemical Engineering and Technology, 2023, 46, 218-233.	1.5	11
2	Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environmental Science and Pollution Research, 2023, 30, 8526-8539.	5.3	64
3	A mini review on microwave and contemporary based biohydrogen production technologies: a comparison. Environmental Science and Pollution Research, 2023, 30, 124735-124747.	5.3	Ο
4	Study the fuel characteristics of ethanol and waste engine oil pyrolytic oil blends. Environmental Science and Pollution Research, 2022, 29, 50928-50936.	5.3	1
5	Conversion of methane to methanol: technologies and future challenges. Biomass Conversion and Biorefinery, 2022, 12, 1851-1875.	4.6	30
6	Pyrolytic oil blended gasoline as future fuel: pyrolysis mechanism, fuel properties, and composition analysis. Environmental Science and Pollution Research, 2022, 29, 86400-86417.	5.3	1
7	Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: A review. Bioresource Technology, 2022, 351, 127085.	9.6	44
8	Conversion of carbon dioxide to methanol: A comprehensive review. Chemosphere, 2022, 298, 134299.	8.2	45
9	Lignocellulosic waste biomass for biohydrogen production: future challenges and bioâ€economic perspectives. Biofuels, Bioproducts and Biorefining, 2022, 16, 838-858.	3.7	18
10	Coâ€pyrolysis of coalâ€biomass: study on reaction kinetics and thermodynamics. Biofuels, Bioproducts and Biorefining, 2022, 16, 725-742.	3.7	10
11	Characterization of waste engine oil derived pyrolytic char (WEOPC): SEM, EDX and FTIR analysis. Materials Today: Proceedings, 2021, 38, 2866-2870.	1.8	7
12	Encapsulating toxic Rhodamine 6G dye, and Cr (VI) metal ions from liquid phase using AlPO4-5 molecular sieves. Preparation, characterization, and adsorption parameters. Journal of Molecular Liquids, 2021, 336, 116549.	4.9	12
13	Effect of Catalyst Bed Height on the Yield and Composition of Non-edible Seed Pyrolytic Oil. Waste and Biomass Valorization, 2020, 11, 4507-4519.	3.4	2
14	Thermochemical conversion of waste engine oil (WEO) to gasoline-rich crude oil. Journal of Material Cycles and Waste Management, 2020, 22, 536-546.	3.0	13
15	Characterization of waste engine oil (WEO) pyrolytic oil and diesel blended oil: Fuel properties and compositional analysis. Materials Today: Proceedings, 2020, 33, 4933-4936.	1.8	10
16	Niger Seed Thermal Pyrolysis: Characterization of Aqueous Phase Pyrolytic Liquid and Char. SSRN Electronic Journal, 2019, , .	0.4	1
17	Degradation kinetic study of pyrolysis and co-pyrolysis of biomass with polyethylene terephthalate (PET) using Coats–Redfern method. Journal of Thermal Analysis and Calorimetry, 2018, 131, 1803-1816.	3.6	50
18	Fuel properties and composition study of Cassia siamea seed crude pyrolytic oil and char. Fuel, 2018, 234, 609-615.	6.4	17

2

#	Article	IF	CITATIONS
19	Effect of catalytic vapour cracking on fuel properties and composition of castor seed pyrolytic oil. Journal of Analytical and Applied Pyrolysis, 2016, 120, 103-109.	5.5	19
20	Thermo-chemical conversion of mango seed kernel and shell to value added products. Journal of Analytical and Applied Pyrolysis, 2016, 121, 403-408.	5.5	30
21	Co-pyrolysis of Karanja and Niger seeds with waste polystyrene to produce liquid fuel. Fuel, 2015, 153, 492-498.	6.4	63
22	Effect of Co-pyrolysis of mahua seed and waste polystyrene on quality of liquid fuel. Journal of Renewable and Sustainable Energy, 2014, 6, .	2.0	12
23	Thermo-chemical conversion of Kusum seed: A possible route to produce alternate fuel and chemicals. Journal of Analytical and Applied Pyrolysis, 2014, 110, 291-296.	5.5	29
24	Production and characterization of pyrolytic oil by catalytic pyrolysis of Niger seed. Fuel, 2014, 126, 109-115.	6.4	63
25	Kinetic study and thermal analysis of the pyrolysis of non-edible oilseed powders by thermogravimetric and differential scanning calorimetric analysis. Renewable Energy, 2014, 63, 337-344.	8.9	61
26	Thermal and catalytic pyrolysis of Karanja seed to produce liquid fuel. Fuel, 2014, 115, 434-442.	6.4	84
27	Comparison of yield and fuel properties of thermal and catalytic Mahua seed pyrolytic oil. Fuel, 2014, 117, 372-380.	6.4	69
28	Characterization of nonconventional oil containing seeds towards the production of bio-fuel. Journal of Renewable and Sustainable Energy, 2013, 5, .	2.0	17
29	Thermolysis of polanga seed cake to bio-oil using semi batch reactor. Fuel, 2012, 97, 450-456.	6.4	45
30	Liquid fuel from castor seeds by pyrolysis. Fuel, 2011, 90, 2538-2544.	6.4	115