
Eva-Maria Mandelkow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6087756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of the In Vivo Relationship Between Cerebral Hypometabolism, Tau Deposition, TSPO Expression, and Synaptic Density in a Tauopathy Mouse Model: a Multi-tracer PET Study. Molecular Neurobiology, 2022, 59, 3402-3413.	4.0	10
2	Inhibition of Tau aggregation with BSc3094 reduces Tau and decreases cognitive deficits in rTg4510 mice. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2021, 7, e12170.	3.7	6
3	A combinatorial native MS and LC-MS/MS approach reveals high intrinsic phosphorylation of human Tau but minimal levels of other key modifications. Journal of Biological Chemistry, 2020, 295, 18213-18225.	3.4	28
4	Novel antibody against lowâ€n oligomers of tau protein promotes clearance of tau in cells via lysosomes. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12097.	3.7	10
5	Functional networks are impaired by elevated tau-protein but reversible in a regulatable Alzheimer's disease mouse model. Molecular Neurodegeneration, 2019, 14, 13.	10.8	28
6	Suppressing Tau Aggregation and Toxicity by an Anti-Aggregant Tau Fragment. Molecular Neurobiology, 2019, 56, 3751-3767.	4.0	10
7	Tau/MAPT disease-associated variant A152T alters tau function and toxicity via impaired retrograde axonal transport. Human Molecular Genetics, 2019, 28, 1498-1514.	2.9	26
8	Presynaptic Pathophysiology Encoded in Different Domains of Tau– Hyper-Versus Hypoexcitability?. Advances in Experimental Medicine and Biology, 2019, 1184, 97-103.	1.6	5
9	Interplay of pathogenic forms of human tau with different autophagic pathways. Aging Cell, 2018, 17, e12692.	6.7	148
10	Glutamatergic nervous system degeneration in a C. elegans TauA152T tauopathy model involves pathways of excitotoxicity and Ca2+ dysregulation. Neurobiology of Disease, 2018, 117, 189-202.	4.4	17
11	Time course of Tau toxicity and pharmacologic prevention in a cellÂmodel of Tauopathy. Neurobiology of Aging, 2017, 57, 47-63.	3.1	19
12	Extracellular lowâ€n oligomers of tau cause selective synaptotoxicity without affecting cell viability. Alzheimer's and Dementia, 2017, 13, 1270-1291.	0.8	87
13	Anti-aggregant tau mutant promotes neurogenesis. Molecular Neurodegeneration, 2017, 12, 88.	10.8	20
14	Tau: From research to clinical development. Alzheimer's and Dementia, 2016, 12, 1033-1039.	0.8	117
15	MMP-9 and MMP-2 Contribute to Neuronal Cell Death in iPSC Models of Frontotemporal Dementia with MAPT Mutations. Stem Cell Reports, 2016, 7, 316-324.	4.8	27
16	Adenosine A ₁ receptor antagonist rolofylline alleviates axonopathy caused by human Tau ΔK280. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11597-11602.	7.1	39
17	The Tau/A152T mutation, a risk factor for frontotemporalâ€spectrum disorders, leads to <scp>NR</scp> 2B receptorâ€mediated excitotoxicity. EMBO Reports, 2016, 17, 552-569.	4.5	94
18	Tau mutant A152T, a risk factor for FTD/PSP, induces neuronal dysfunction and reduced lifespan independently of aggregation in a C. elegans Tauopathy model. Molecular Neurodegeneration, 2016, 11, 33.	10.8	38

#	Article	IF	CITATIONS
19	Age-dependent neuroinflammation and cognitive decline in a novel Ala152Thr-Tau transgenic mouse model of PSP and AD. Acta Neuropathologica Communications, 2016, 4, 17.	5.2	35
20	Tau neurotoxicity and rescue in animal models of human Tauopathies. Current Opinion in Neurobiology, 2016, 36, 52-58.	4.2	54
21	Tau missorting and spastin-induced microtubule disruption in neurodegeneration: Alzheimer Disease and Hereditary Spastic Paraplegia. Molecular Neurodegeneration, 2015, 10, 68.	10.8	69
22	Pro-aggregant Tau impairs mossy fiber plasticity due to structural changes and Ca++ dysregulation. Acta Neuropathologica Communications, 2015, 3, 23.	5.2	70
23	Preventive methylene blue treatment preserves cognition in mice expressing full-length pro-aggregant human Tau. Acta Neuropathologica Communications, 2015, 3, 25.	5.2	102
24	Stages and Conformations of the Tau Repeat Domain during Aggregation and Its Effect on Neuronal Toxicity. Journal of Biological Chemistry, 2014, 289, 20318-20332.	3.4	77
25	Oligomer Formation of Tau Protein Hyperphosphorylated in Cells. Journal of Biological Chemistry, 2014, 289, 34389-34407.	3.4	132
26	Making the Brain Glow: In Vivo Bioluminescence Imaging to Study Neurodegeneration. Molecular Neurobiology, 2013, 47, 868-882.	4.0	37
27	Cascade of tau toxicity in inducible hippocampal brain slices and prevention by aggregation inhibitors. Neurobiology of Aging, 2013, 34, 1343-1354.	3.1	46
28	Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO Journal, 2013, 32, 2920-2937.	7.8	222
29	Regulatable transgenic mouse models of <scp>A</scp> lzheimer disease: onset, reversibility and spreading of <scp>T</scp> au pathology. FEBS Journal, 2013, 280, 4371-4381.	4.7	63
30	Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Human Molecular Genetics, 2012, 21, 3500-3512.	2.9	198
31	Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Human Molecular Genetics, 2012, 21, 3587-3603.	2.9	155
32	Tau's role in the developing brain: implications for intellectual disability. Human Molecular Genetics, 2012, 21, 1681-1692.	2.9	69
33	Biochemistry and Cell Biology of Tau Protein in Neurofibrillary Degeneration. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006247-a006247.	6.2	608
34	Linking Amyloid-ß and Tau: Amyloid-ß Induced Synaptic Dysfunction via Local Wreckage of the Neuronal Cytoskeleton. Neurodegenerative Diseases, 2012, 10, 64-72.	1.4	78
35	Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau. Acta Neuropathologica, 2012, 123, 787-805.	7.7	112
36	Reversibility of Tau-Related Cognitive Defects in a Regulatable FTD Mouse Model. Journal of Molecular Neuroscience, 2011, 45, 432-437.	2.3	42

#	Article	IF	CITATIONS
37	Microtubule Affinity Regulating Kinase Activity in Living Neurons Was Examined by a Genetically Encoded Fluorescence Resonance Energy Transfer/Fluorescence Lifetime Imaging-based Biosensor. Journal of Biological Chemistry, 2011, 286, 41711-41722.	3.4	39
38	Tau-Induced Defects in Synaptic Plasticity, Learning, and Memory Are Reversible in Transgenic Mice after Switching Off the Toxic Tau Mutant. Journal of Neuroscience, 2011, 31, 2511-2525.	3.6	252
39	Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO Journal, 2011, 30, 4825-4837.	7.8	171
40	Human Tau Isoforms Assemble into Ribbon-like Fibrils That Display Polymorphic Structure and Stability. Journal of Biological Chemistry, 2010, 285, 27302-27313.	3.4	96
41	Aβ Oligomers Cause Localized Ca ²⁺ Elevation, Missorting of Endogenous Tau into Dendrites, Tau Phosphorylation, and Destruction of Microtubules and Spines. Journal of Neuroscience, 2010, 30, 11938-11950.	3.6	566
42	Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Human Molecular Genetics, 2009, 18, 4153-4170.	2.9	516
43	The Potential for β-Structure in the Repeat Domain of Tau Protein Determines Aggregation, Synaptic Decay, Neuronal Loss, and Coassembly with Endogenous Tau in Inducible Mouse Models of Tauopathy. Journal of Neuroscience, 2008, 28, 737-748.	3.6	264
44	Proline-directed Pseudo-phosphorylation at AT8 and PHF1 Epitopes Induces a Compaction of the Paperclip Folding of Tau and Generates a Pathological (MC-1) Conformation. Journal of Biological Chemistry, 2008, 283, 32066-32076.	3.4	206
45	The β-Propensity of Tau Determines Aggregation and Synaptic Loss in Inducible Mouse Models of Tauopathy. Journal of Biological Chemistry, 2007, 282, 31755-31765.	3.4	162
46	Missorting of Tau in Neurons Causes Degeneration of Synapses That Can Be Rescued by the Kinase MARK2/Par-1. Journal of Neuroscience, 2007, 27, 2896-2907.	3.6	261
47	Inducible Expression of Tau Repeat Domain in Cell Models of Tauopathy. Journal of Biological Chemistry, 2006, 281, 1205-1214.	3.4	302
48	Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1739, 158-166.	3.8	321
49	MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. Journal of Cell Biology, 2004, 167, 99-110.	5.2	219
50	Mutations of Tau Protein in Frontotemporal Dementia Promote Aggregation of Paired Helical Filaments by Enhancing Local β-Structure. Journal of Biological Chemistry, 2001, 276, 48165-48174.	3.4	501
51	X-ray Structure of Motor and Neck Domains from Rat Brain Kinesin,. Biochemistry, 1997, 36, 16155-16165.	2.5	177
52	Microtubule oscillations. Cytoskeleton, 1992, 22, 235-244.	4.4	54
53	Aluminum fluoride, microtubule stability, and kinesin rigor. Journal of Cell Science, 1991, 1991, 147-150.	2.0	3