Grace R Jeschke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/608604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deciphering Protein Kinase Specificity Through Large-Scale Analysis of Yeast Phosphorylation Site Motifs. Science Signaling, 2010, 3, ra12.	3.6	341
2	Crenolanib is a selective type I pan-FLT3 inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5319-5324.	7.1	182
3	Active-site determinants of substrate recognition by the metalloproteinases TACE and ADAM10. Biochemical Journal, 2009, 424, 79-88.	3.7	147
4	Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single-cell analysis. Blood, 2017, 130, 48-58.	1.4	143
5	Reciprocal Phosphorylation of Yeast Glycerol-3-Phosphate Dehydrogenases in Adaptation to Distinct Types of Stress. Molecular and Cellular Biology, 2012, 32, 4705-4717.	2.3	99
6	Phosphoproteomic analysis identifies the tumor suppressor PDCD4 as a RSK substrate negatively regulated by 14-3-3. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2918-27.	7.1	70
7	Exploiting the Unique ATP-Binding Pocket of <i>Toxoplasma</i> Calcium-Dependent Protein Kinase 1 To Identify Its Substrates. ACS Chemical Biology, 2013, 8, 1155-1162.	3.4	54
8	CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies. Genes and Development, 2017, 31, 1007-1023.	5.9	49
9	Phase I dose escalation study of lestaurtinib in patients with myelofibrosis. Leukemia and Lymphoma, 2015, 56, 2543-2551.	1.3	29
10	Defining the Substrate Specificity Determinants Recognized by the Active Site of C-Terminal Src Kinase-Homologous Kinase (CHK) and Identification of β-Synuclein as a Potential CHK Physiological Substrate. Biochemistry, 2011, 50, 6667-6677.	2.5	16
11	Cyclic GMP-dependent Stimulation of Serotonin Transport Does Not Involve Direct Transporter Phosphorylation by cGMP-dependent Protein Kinase. Journal of Biological Chemistry, 2012, 287, 36051-36058.	3.4	15
12	Intrinsic Resistance to JAK2 Inhibition in Myelofibrosis. Clinical Cancer Research, 2013, 19, 1729-1739.	7.0	14
13	Sirolimus enhances remission induction in patients with high risk acute myeloid leukemia and mTORC1 target inhibition. Investigational New Drugs, 2018, 36, 657-666.	2.6	12
14	Global view of the RAF-MEK-ERK module and its immediate downstream effectors. Scientific Reports, 2019, 9, 10865.	3.3	12
15	AUF-1 and YB-1 are critical determinants of β-globin mRNA expression in erythroid cells. Blood, 2012, 119, 1045-1053.	1.4	10
16	AUF-1 and YB-1 independently regulate β-globin mRNA in developing erythroid cells through interactions with poly(A)-binding protein. Mechanisms of Development, 2015, 136, 40-52.	1.7	7
17	Infusion of CD3/CD28 costimulated umbilical cord blood T cells at the time of single umbilical cord blood transplantation may enhance engraftment. American Journal of Hematology, 2016, 91, 453-460.	4.1	7
18	Substrate priming enhances phosphorylation by the budding yeast kinases Kin1 and Kin2. Journal of Biological Chemistry, 2018, 293, 18353-18364.	3.4	3

#	Article	IF	CITATIONS
19	DYRK1A Is Required to Alleviate Replication Stress in KMT2A-Rearranged Acute Lymphoblastic Leukemia. Blood, 2020, 136, 39-40.	1.4	2
20	A Phase II Trial of Sirolimus with Standard Induction Chemotherapy in Patients with De Novo Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, S203-S204.	0.4	0